
Mitigating Contention in Distributed Systems
General Exam

Brandon Holt
University of Washington

bholt@cs.uw.edu

Abstract

The online world is a dangerous place for interactive applications. A single
post by Justin Bieber can slow Instagram to a crawl; a black and blue dress go-
ing viral sends Buzzfeed scrambling to stay afloat; Star Wars movie ticket pre-
sales cause service interruptions for Fandango and crash others. Developers of
distributed applications must work hard to handle these high-contention situ-
ations because though they are not the average case, they affect a large fraction
of users.

Techniques for mitigating contention abound, but many require program-
mers to make tradeoffs between performance and consistency. In order to
meet performance requirements such as high availability or latency targets,
applications typically use weaker consistency models, shifting the burden of
reasoning about replication to programmers. Developers must balance mech-
anisms that reign in consistency against their effect on performance and make
difficult decisions about where precision is most critical.

Abstract data types (ADTs) hide implementation details behind a clean ab-
stract representation of state and behavior. This high-level representation is
easy for programmers to build applications with and provides distributed sys-
tems with knowledge of application semantics, such as commutativity, which
are necessary to apply contention-mitigating optimizations. With inconsis-
tent, probabilistic, and approximate (IPA) types, we can express weaker semantics
than with traditional ADTs, enabling techniques for weak consistency to be
used and allowing precision to be explicitly traded for performance where ap-
plications can tolerate error. In previous work, we have demonstrated that
ADT awareness can result in significant performance improvements: 3-50x
speedup in transaction throughput for high-contention workloads such as an
eBay-like auction service and a Twitter-like social network. IPA types are pro-
posed for future work.

1. Introduction

Imagine a young ticket selling app, embarking on a mission to help people every-
where get a seat to watch their favorite shows. Bright-eyed and ready to face the
world, it stores everything in a key/value store so that it will not forget a thing. It
uses a distributed key/value store, so when it expands into new cities and reaches
its millionth customer, the datastore continues to grow with it. The app uses
strong consistency and transactions to ensure that no tickets are sold twice or
lost, and its customers praise its reliability. “Five stars. That little app always gets
my tickets, fast!” they say.

Then one day, pre-sales for the 7th Star Wars movie come out and suddenly it is
inundated under a surge over 7 times the usual load, as a record-breaking number

1

of people try to purchase tickets for this one movie. This concentrated traffic
causes hot spots in the datastore; while most nodes are handling typical traffic, the
traffic spike ends up being funneled to a handful of nodes which are responsible
for this movie. These hotspots overload this app’s “scalable” datastore, causing
latencies to spike, users’ connections to time out, and disappointed users who will
not get to see the movie on opening night because the app was not able to sell them
a ticket. On this dark night for moviegoers, even major players like Fandango,
Regal, and AMC are plagued with service interruptions; some sites even crash or
lose data.

This kind of concentrated surge in traffic is a perfect illustration of the con-
tention that occurs all the time in real-world workloads, from ticket sales to so-
cial networks. Power law distributions are everywhere, from popularity of pages
to number of followers, leading to network effects which can magnify even the
slightest signals. Events – such as the FIFA World Cup or the Oscars – happening
in realtime drive spikes in traffic. All together, this can create memes that prop-
agate virally through social media and news sites. Interactivity is crucial to all of
this — it both fuels the propagation of memes and causes contention.

Paradoxically, though contention is not the average case, it is responsible for
many of the most challenging problems: tail latency, failures, and inconsistency
bugs. Most of the time, an application may work correctly, with low latency and
no noticeable inconsistency. However, in that 99th percentile case, contention
results in a hot spot, where latencies spike, failure rates go up, and consistency
can degrade, exposing bugs or resulting in user-visible inconsistencies.

1.1. Mitigating contention

Many techniques, over many years, have tackled this problem from different an-
gles, from research on escrow and fragmenting aggregate fields in the 80s [51],
to modern research on auto-generated coordination based on annotations [13,
63]. Some require a variety of changes to the programming model, while oth-
ers improve underlying protocols and mechanisms. All are focused on exposing
concurrency and making tasks simpler for programmers, but they can be broken
down into three broad approaches, shown in Figure 1.

1. Is there any concurrency within the contended record that can be exposed?
If operations on the record are commutative, they can safely run concur-
rently without changing the semantics; abstract locks (§6.2.1) leverage this to
allow transactions to overlap and avoid false conflicts. Escrow (§4.1.3) allows
the record to be treated as if it was split into a pool of fragments.

2. If clients are multithreaded, as is the case with frontend web servers that
typically handle many end-user requests concurrently, then some of the syn-
chronization work can be offloaded to them. Combining (§6.1) leverages as-
sociativity to allow operations to be merged locally and executed as a single
operation remotely, reducing the amount of work done on the overloaded
datastore. Other techniques like leases (§4.2.1) let client-side caches avoid
costly invalidation messages.

3. If clients are allowed to interact with weakly-synchronized replicas, the load
on the contended shard can be reduced. However, this comes at a signifi-
cant programmability cost: the illusion of a single copy of data is broken
and programmers must now reason about replicated state. Weakly synchro-
nized replicas share updates asynchronously, and clients may communicate
with multiple replicas, so they can observe effects out of order, or perform
updates which conflict and result in inconsistent states.

2

Replica 0

Replica 1 Replica 2

Client

Client

①
Unlock safe

concurrency

within the record

②
Offload

synchronization

to clients.

③
Trade off consistency

(weak replication)

Client

Figure 1. Overview of approaches for mitigating contention, such as the hotspot
in red.

To be clear, techniques in the first and second categories can use replicas for
fault tolerance and still maintain strong consistency. Strong consistency requires
writes to be linearizable [37], which can be accomplished with replicas either by
funneling through a single master or by a consensus protocol like Paxos [43] that
makes replicas appear like a single machine. Techniques like E-Paxos [48] would
fall under (1) because they expose concurrency while maintaining the single-machine
view.

The third category requires much more drastic changes to programming mod-
els than the first two because it forces programmers to sacrifice consistency guar-
antees. However, weak consistency unlocks further improvements to perfor-
mance properties like availability and lower latency that are impossible with strong
consistency. In this work I will focus mostly on techniques that fall into this cat-
egory because these are the most challenging to understand and require the most
significant changes for programmers.

1.2. Balancing requirements

Mitigating contention is just one of the many competing requirements placed on
distributed applications. They are expected to be scalable, fault tolerant, and highly
available. Users demand responsive applications, no matter how many other users
are active or where they are. The common wisdom is that companies lose money
for every increase in response latency. Many systems have service-level agree-
ments (SLAs) promising responses within a certain latency for all but the 99th
percentile of requests. Throughput during peak times must be able to keep up
with the load.

These performance constraints compete with the desire for programmability
and correctness. Fundamentally, strong consistency cannot be provided with high
availability — replication must be exposed in some way. Strict serializability and
ACID transactions are among the many useful programming abstractions that
must be broken to achieve those performance properties. Applications are still

3

expected to appear mostly consistent, so developers are forced to think carefully
about how to build correct systems with weaker guarantees and choose where to
focus their effort.

Luckily, not everything requires the same level of precision or consistency.
Some actions, such as selling the last ticket to Star Wars’ opening night, require
precise, consistent execution. Other situations, such as viewing the number of
retweets for a popular tweet, do not need to be exactly correct — users may be
satisfied as long as the number is the right order of magnitude. These hard and
soft constraints can be difficult or impossible to express in current systems. Fur-
thermore, whatever tradeoffs are made to improve programmability or enforce
constraints must be balanced against meeting the performance targets, though it
is not easy to quantify how changes will affect them. Programmers of these dis-
tributed applications must constantly juggle competing correctness and perfor-
mance constraints.

1.3. Overview

To understand how the various techniques for managing consistency and perfor-
mance relate to one another, we will explore them in terms of the properties they
trade off:

• Ordering and visibility constraints between operations
• Uncertainty about the state in terms of staleness and possible values

We will also discuss how each technique operates, in terms of:

• Granularity: Does it affect the whole system, specific records, or specific op-
erations?

• Knowledge vs control: Are users granted additional information about perfor-
mance or consistency or are they given explicit control?

After exploring the space of existing techniques, we will propose a programming
model that incorporates these disparate solutions into a single abstraction – us-
ing abstract data types (ADTs) to concisely describe application semantics and hide
the details of the underlying consistency and coordination techniques. Our im-
plementations, in a distributed data analytics system, Grappa, and a prototype
ADT-store, Claret, show significant performance improvements, especially for
high contention workloads. In future work, we propose using inconsistent, proba-
bilistic, and approximate (IPA) types to trade off precision in order to take advantage
of weak consistency and replication for high availability and scalability.

2. Trading off consistency for performance

In order to meet scalability, availability, and latency requirements, distributed sys-
tems programmers must routinely make tradeoffs between consistency and per-
formance [9, 20, 32]. In the typical case, consistency does not pose a problem, even
for geo-replicated systems – most requests are reads, requests for the same user
typically go to the same server, and inconsistency windows after updates are usu-
ally small [9, 47]. Consistency becomes problematic in exceptional high contention
cases and the long tail of disproportionately slow requests [27]. However, these
cases are almost pathologically bad – many users together create conflicts lead-
ing to inconsistency, but this also means that many users are there to observe the
inconsistency, so it is more likely to be noticed. The events most likely to cause
problems are also the most news-worthy.

4

Targeting performance for the average case can lead to catastrophic failures in
the contentious cases, but the handling all possible cases damages programmabil-
ity. This burden will become abundantly clear over the next few sections as we
look at the axes which programmers must traverse when making implementation
choices.

3. Ordering and visibility constraints

Understanding the behavior of a sequence of operations in a program requires
knowing all of the ordering and visibility constraints that govern what each op-
eration returns and when each update actually runs. How these constraints are
set is determined by the programming model.

3.1. Consistency models

Analogous to memory models in the field of computer architecture, consistency
models refer to the allowable reorderings of operations and their visibility in a
distributed system. Consistency models differ from memory models primarily in
one way: exposing the existence of replication. Due to the reliability and speed of
CPU cache hierarchies, memory models can afford to assume coherence will ensure
that there appears to be only one copy of memory. In distributed systems, where
failure is a possibility and synchronization is expensive, it is often necessary to
expose replication through the consistency model. This makes them significantly
more difficult to reason about – as if memory models were not complex enough
as it is.

The strongest consistency model, strict serializability (roughly defined as Lam-
port’s sequential consistency [42] combined with Herlihy’s linearizability [37]) guar-
antees that operations appear to occur in a global serial order that all observers
agree on and that corresponds to real time. This, and any form of consistency that
requires enforcing a global total order is theoretically impossible to enforce with
high availability due to the possibility of network partitions (this is the essence of
the CAP theorem [20, 32]). In practice, strict serializability may not be wholly im-
practical for the average case, but ensuring it in all cases is prohibitively expensive.

At the other extreme, eventual consistency, the least common denominator among
consistency models, simply guarantees that if update operations stop occurring,
all replicas will eventually reflect the same state [70]. Under this model, program-
mers cannot count on subsequent operations reflecting the same state, because
those operations could go to any replica at any time, and those replicas are con-
tinuously receiving updates from other nodes.

There are a whole family of models similar to eventual consistency which add
various ordering constraints:

• Monotonic writes (MW) ensure that writes from a client are serialized, enforc-
ing ordering between writes.

• Monotonic reads (MR) ensures that reads will not observe earlier values than
have been seen by a particular client already, strengthening visibility.

• Read-your-writes (RYW) ensures that a client will at least observe its own ef-
fects – primarily strengthening an aspect of visibility.

• Causal consistency ensures that operations from different clients causally fol-
lowing a write will observe that write (by some definition of causation which
the system must track). This means that operations will be visible to and or-
dered with each other when applicable.

5

There are too many variations on these and other models to enumerate, includ-
ing combinations of them. Each restricts ordering and visibility differently, making
some cases easier for programmers to reason about, while reducing the flexibil-
ity and therefore performance of the system. For instance, some require sticky
sessions [67], which forces clients to continue communicating with a particular
replica, even if it is not the fastest, or lowest latency, or most up-to-date one avail-
able.

As a way of trading off consistency for performance, weak consistency models
are a poor choice. A particular consistency model must often be chosen at a very
coarse grain, possibly at the level of an entire database. Stronger guarantees can
be enforced on top of a weaker model using quorums, but these must be chosen
carefully, and the code to handle this is not easily adapted to changes in the under-
lying consistency model. In general, weak consistency models are not modular:
adding or changing an operation in one place may require changing assumptions
about ordering elsewhere. Understanding when an operation becomes visible to
others is yet another source of confusion.

3.2. Transactions

Transactions are a well-established way to provide stronger guarantees among
some operations. By choosing the type and granularity of transactions, program-
mers have some control over the ordering and visibility of their operations. Like
strict serializability, full ACID transactions require a global order so are pro-
hibitive to scaling and high availability, leading to the development of weaker
transaction models. As the antithesis of the strong guarantees of ACID, some have
termed these weaker semantics “BASE” (Basically Available, Soft state, Eventually
Consistent) [53]. Luckily, programmers are not restricted to simply choosing be-
tween these two extremes; some have proposed ways to bridge the gap.

3.2.1. Transaction chopping and chaining

Some techniques can expose limited extra concurrency between transactions with-
out requiring programmers to sacrifice ACID semantics. Transaction chopping [60]
automates a task programmers could do by hand: breaking transactions into minimal-
sized atomic pieces, determined by a static analysis of interleavings. A more re-
cent system, Lynx [76] executes split transactions as a chain, hopping from shard
to shard, coordinating the order of execution to allow conflicting transactions to
safely interleave. Finally, Callas [74] groups transactions that commute with each
other to allow them to execute concurrently. Transaction boosting [35] similarly
allows transactions to overlap when they commute, but at the level of individual
operations.

3.2.2. Salt: Combining ACID and BASE

Just as a small fraction of data items are responsible for the majority of contention,
the same is true for transactions. Rather than forcing programmers to give up
ACID semantics for their entire application, Salt [73] allows transactions with
BASE semantics to coexist safely with ACID transactions. Using new locking
schemes, they ensure that transactions executing with weaker BASE semantics
cannot violate the strong safety guarantees of the ACID transactions.

Converting an ACID transaction to execute without those guarantees is an
error-prone task; it involves considering all the new possible interleavings and
establishing how to resolve all the possible conflicts without coordination. Salt’s

6

model means that programmers only need to “BASE-ify” the transactions caus-
ing performance or scaling problems. This makes it relatively straightforward to
trade off consistency where necessary, but does not do much to help programmers
deal with the weaker semantics.

3.2.3. RAMP transactions

Even without guarantees of a serializable total order, there are still benefits to
supporting atomic updates: preventing foreign key constraint violations, and en-
suring that indexes and other derived data are as up-to-date as the backing data. In
support of these safety properties, RAMP (Read Atomic Multi-Partition) transactions
provide coordination-free atomic visibility for multiple updates [11]. They work
by staging updates on all participating shards so they can force the complete set of
updates for a transaction to be made visible at one point in time. They dynamically
detect racy reads and fix them by either selecting an appropriate staged version or
waiting for another round of communication. Because these determinations are
made locally, they cannot guarantee global mutual exclusion or serializability.

3.3. Models inspired by distributed version control

One of the troubles with weakly consistent replication is that it is often not possi-
ble to construct a serializable history of an execution, making it difficult to figure
out which effects could have been visible to a particular client. Distributed ver-
sion control systems (DVCS) like Git have inspired alternative ways of viewing
concurrent execution. DVCSs allow individuals to work concurrently on forks or
branches without interference and resolve conflicts at explicit merge points later.
These histories are not serializable, but they still allow users to easily understand
when effects become visible to different observers.

The Push/Pull Model of Transactions [40] formalized several consistency and
transaction models in these terms. Another model called branch consistency pro-
posed for a system called TaRDIS [26] uses the notion of branching and merging
for isolation and conflict resolution in geo-replicated systems, delegating conflict
resolution to applications.

Concurrent revisions [21] proposes an execution model built around forking and
joining state along with concurrent execution to make sharing explicit. In this
model, concurrent tasks fork a copy of the state they access. Changes to forked
state are only visible to that task and its descendants until the concurrent task is
joined back in. On join, changes to forked data items are merged according to their
type. For example, as a cumulative type, a forked Counter tracks increments made
to it, and when joined, adds those increments to the original value. In this way,
multiple concurrent tasks can increment the shared Counter without conflicting
and it is clear exactly when their effects are made visible. Follow-on work ex-
tended the ideas of concurrent revisions and revision diagrams to reason about
eventual consistency: in eventually consistent transactions [22] and mobile/cloud
applications [23].

These programming models show that there is hope for reasoning about weakly
consistent replicated data. The isolation types and cloud types from concurrent revi-
sions provide useful semantics for working with highly contended data. In these
models, trading off consistency for performance is not as clear-cut; revision dia-
grams and DVCS histories imply strict coordination points. It is also unclear how
to enforce global constraints on forked data. Consider again the ticket sales exam-
ple: in order to ensure tickets are not over-sold, concurrent forks must somehow
know how many of the remaining tickets they are allowed to sell, without know-
ing how many other forks exist, breaking the abstraction.

7

Quelea:

∀(" : sellTicket). " = η ∨ vis(", η) ∨ vis(η, ")

@AddRemoveSet CREATE TABLE MovieTable (

 PRIMARY KEY (movie_id),

 @TrackDeltas tickets_remaining INT,

 ...

) ENGINE=InnoDB

Sieve:
Schema annotations & global invariants

Visibility annotations

Indigo:
Global invariants, post-condition annotations

@Invariant("forall(Movie : m) :- tickets(m) >= 0")

public interface MovieTickets {

 @PostCondition_Decrements("tickets(m, 1)")

 void sellTicket(Movie m);

}

forall(m in MovieTable) :- m.tickets >= 0

sameobj(", η)

forces strong consistency
(overly conservative)

Figure 2. Annotating application invariants. Annotations are used to determine
where coordination is necessary and what consistency is required to enforce it.

3.4. Annotating constraints

Several datastores allow consistency levels to be specified on a per-operation ba-
sis: research systems Gemini [45] (RedBlue consistency), and Walter [64], and pro-
duction systems Cassandra [7] and Riak [17] (per object or namespace). However,
they leave programmers to determine where to use stronger consistency in or-
der to achieve their correctness goals, a very error-prone task. Recent work has
explored ways of automatically choosing the correct consistency level or coordi-
nation strategy based on annotations.

Sieve [44] builds on top of Gemini, automatically determining how to imple-
ment the desired semantics with causal consistency and adding additional syn-
chronization wherever strong consistency is needed. It relies on programmer-
specified global invariants and annotations on the relational database schema to
select the desired merge semantics in case of conflicts. These annotations echo
the variants of CRDTs (see §4.1.1).

Quelea [63] has programmers write contracts to describe ordering constraints
between operations and then automatically selects the correct consistency level
for each operation to satisfy all of the contracts. Contracts are specified in terms
of low-level consistency primitives such as visibility and session order. For exam-
ple, to ensure a non-negative bank account balance, a contract indicates that all
withdraw operations must be visible to one another, forcing the operation to be
executed with sequential consistency. Because correctness properties are speci-
fied independent of a particular consistency model, or set of consistency levels, they
are composable with each other and portable to other datastores supporting dif-
ferent consistency options. However, the low-level primitives used in contracts
may not be intuitive for programmers and still require reasoning about all the
possible anomalies between operations. These primitives are unable to capture
other forms of coordination, sometimes leading to more conservative ordering
constraints than necessary.

Indigo [13] takes a different approach to expressing application requirements:
instead of specifying visibility and ordering constraints, programmers write in-
variants over abstract state and state transitions, and annotate post-conditions on ac-
tions to express their side-effects in terms of the abstract state. They then perform
a static analysis to determine where concurrent execution could violate the invari-
ants and add coordination logic to avoid those conflicts. Supported constraints
include numeric constraints, such as lower or upper bounds on counts, as well as
integrity constraints and general compositions of these.

8

Ordering

Indigo

Quelea

EC

RYW

Causa
l

V
is
ib
il
it
y

Unordered

U
n

c
o

n
tr

o
lle

d
E

x
p

lic
it

Linearizable

DVCS-like

Low latency Higher latency

Sieve

MR

MW

Salt

RAMP

Cass
andra

, …

Figure 3. Ordering and visibility constraints.

Figure 2 shows how annotations would be written in these three systems to
implement our running ticket sales example. In this case, the desired invariant
is that tickets are not over-sold – that is, the count of remaining tickets should
be non-negative. Sieve and Indigo can enforce this invariant directly as written.
Quelea’s visibility-based contracts cannot tightly describe this invariant; instead,
they must be conservative and force ticket sales to be strongly consistent.

Indigo’s approach provides an excellent way to express application-level se-
mantics and have the system automatically figure out how to enforce them. The
primary downside is that abstract state must be modeled separately from the true
application state. Additionally, though their invariants can specify hard constraints,
they do not have a way to express the soft constraints we discussed in §1.2.

3.5. Review: Constraints

Figure 3 organizes the systems we have so far discussed along axes of increased
ordering and visibility constraints. There is no best point in this space – increased
ordering constraints come with restrictions which limit availability and increase
latency. The best solutions, therefore, provide the most flexibility and control
over the constraints they can enforce.

Weak consistency models provide little in the way of ordering or visibility
guarantees. With eventual consistency at the very bottom, Read-Your-Writes ad-
ditionally constrains operations within a session to be visible to one another, while
Monotonic Writes force some order among writes, and Monotonic Reads the vis-
ibility of those ordered writes. Of the consistency models, Causal provides the
most programmer control – essentially arbitrary constraints can be created by
forcing the system to consider them causally linked.

RAMP transactions and DVCS-like techniques allow explicit control over vis-
ibility but little control over ordering between transactions (or branches/forks),
placing them at the top left of Figure 3. Because Salt allows weaker transactions to
interoperate with ACID transactions, it allows programmers to select from range
of ordering and visibility levels depending on need. Cassandra, Riak, Gemini,
and Walter allow per-operation consistency levels to be set, which also provides
a range of constraints, but with significant complexity for programmers.

The annotation-based techniques provide the most control over these con-
straints and also automate part of the task of choosing them. Quelea, with con-

9

G-Set “Grow-only” set, remove is simply disallowed.
PN-Set A counter per item matches add’s and remove’s, the set contains the

item whenever there are more add’s.
OR-Set “Observed-remove” set where causally-related removes are ob-

served, but add wins over remove when concurrent.

Table 1. Example Set CRDTs. Variations are due to the fact that add and remove do
not commute for a sequential Set.

tracts specifically on these constraints, provides the most control, but at a lower
level of abstraction than Indigo or Sieve’s application-level invariants. So far, we
have been dealing mostly in terms of plain reads and writes; the next section will
show how to do better by placing bounds on the allowable values and staleness.

4. Uncertainty

Factoring out the knowledge provided by ordering and visibility constraints, the
state observed by operations is uncertain – subject to constraints on what values
the piece of data may hold and how out-of-date the replica is.

4.1. Restricted values

One of the problems with using eventual consistency is ending up with conflict-
ing writes that overwrite one another in unpredictable ways. The solution to this
without enforcing mutual exclusion somehow is to define commutative deter-
ministic merge functions that resolve conflicts resulting from concurrent updates.
The vision of Bayou [68] was that applications would define custom merge func-
tions over all of the application state so that users could work offline and automat-
ically synchronize their changes the next time they connected. Though this has
not caught on in any major way due to the difficulty (and non-modularity) of han-
dling all possible combinations of updates in a way that is satisfactory to users, it
has led to the development of libraries of data structures with this property called
CRDTs.

4.1.1. CRDTs

Convergent (or conflict-free) replicated data types (CRDTs) [59] are data types that
have commutative merge functions defined for them. Resolving conflicts deter-
ministically requires making choices about the semantics of concurrent updates,
leading to a proliferation of CRDTs for various use cases. Even simple data struc-
tures like Sets must have multiple variants such as those in Table 1 that resolve
non-commuting operations differently.

CRDTs can be enormously useful because they allow concurrent updates to ac-
cumulate. Riak [17] implements several data types and encourages their use. Like
ADTs, CRDTs also provide a well-defined set of possible values that a variable can
hold, restricted to changes made by supported operations. This is a clear advan-
tage over simple registers that are completely overwritten on each write, making
them unpredictable when the order of updates is uncertain. CRDTs can still suf-
fer from many of the effects of eventual consistency. Updates applied to different
replicas mean clients could see divergent changes for some time, and convergence
does nothing to change that. Keep in mind that divergence could continue indef-

10

initely thanks to eventual consistency, we will get to techniques that quantify the
actual time this takes.

4.1.2. Bloom

The philosophy of Bloom [4, 25] is to find ways to write programs that avoid the
need for coordination as much as possible. The CALM Principle (Consistency And
Logical Monotonicity) advocated by this work formalizes the requirements for
an entire program to be eventually consistent, obviating any need for coordina-
tion. It is built around the notion of monotonicity—programs compute sets of
facts that grow over time so that information is never lost and convergence can
be guaranteed.

In the Bloom model, programmers express applications as statements about
monotonically growing sets of facts. These facts can be encoded as sets or other
collections with suitable merge functions ensuring values of the type have a well-
defined partial order, such as CRDTs [25]. Bloom statically ensures that programs
compose these types in ways that are monotonic.

In its pure form, Bloom’s programming model requires substantial changes
to most applications, so later work on Blazes [5] showed how the monotonicity
analysis could be applied to find where coordination is necessary in existing dis-
tributed applications by annotating components with Bloom’s properties. This
style of programming is somewhat different than the other annotation-based ap-
proaches of Indigo and Quelea because it focuses on sealing streams at coordina-
tion points. Bloom and its variants can ensure eventual consistency, but again this
says nothing about how long it will take or what intermediate states will be ob-
servable, so in practice, users would still have to worry about observing stale or
inconsistent states.

4.1.3. Escrow and Reservations

Escrow is a term from banking and legal proceedings where some amount of money
is set aside and held by a third party in order to ensure it will be available for use
at a later time after some (typically legal) condition is met. In database systems,
this term has been borrowed for use in concurrency control to refer to “setting
aside” some part of a record to be later committed.

O’Neil’s idea of escrow [51] came from work on Fast Path [31] and Reuter’s
Transactional Method [54]. The idea was to increase concurrency on aggregate
fields, such as fields keeping track of a count or a sum, which could become hot
spots because they were updated frequently. The idea of escrow is to split up
an aggregate value into a pool of partial values and allocate parts from the pool
to transactions when they execute so that when they are ready to commit, they
are guaranteed to be able to. For example, if a transaction is going to decrement
an account balance provided there are sufficient funds, it will hold the amount
it wishes to decrement in escrow. Other transactions can also decrement the bal-
ance, as long as combined they will not leave the balance negative. If a transaction
aborts, the escrowed values are returned to the pool.

Escrow can be extended to any fragmentable object [71], that is, any data type
providing a way to split itself into fragments of the same type, and a way to later
merge the fragments back together. This is essentially the inverse of the criteria
for monoids used for aggregators in Summingbird [19], and similar to the isolation
types in Concurrent Revisions §3.3.

Reservations can be thought of as escrow for replicated data. A reservation pre-
allocates permission to do updates so that in the future they can be done without

11

coordination. This moves coordination off the critical path and allows synchro-
nization to be amortized when multiple updates share a reservation. For exam-
ple, in Mobisnap [52] where they were first introduced, a salesman might reserve
a number of tickets or a some quantity of a commodity, then while on the go,
without connectivity, make a sale and know that it is safe to do so. Combining
reservations with leases (discussed next in §4.2.1) allows them to be reclaimed au-
tomatically after a certain time has elapsed. Exo-leasing [62], not quite using lease
the same way, further extends escrow and reservations to be decentralized and
exchangeable among offline clients.

Reservations are easy to generalize — Indigo [13] uses them to implement its
application-specific conflict avoidance logic that includes auto-generated code.
A similar implementation of numeric invariant preservation called bounded coun-
ters [15] was built on top of Riak.

Imbalance can be a problem when reservations are distributed: if some repli-
cas receive more requests than others, they may use up all of their reserved up-
dates before others do. In these situations, techniques such as the demarcation
protocol [14, 16], or handoff [3] can allow replicas to redistribute permissions or
re-balance per-replica limits. These techniques operate similar to work-stealing in
Cilk [2].

4.2. Bounded staleness

In theory, eventually consistent systems provide absolutely no guarantees dur-
ing execution because there is no bound on the time it must take for updates to
propagate, and there are almost no situations where updates are guaranteed not
to occur. In practice, however, programmers typically observe very few actual
consistency errors, even at large scale [47]. This is because the propagation time,
or inconsistency window is typically very small, on the order of tens of millisec-
onds [12], so few accesses observe the gap. However, programmers cannot rely
on these observations because they do not hold in all cases. High contention sit-
uations are particularly problematic because with more concurrent updates and
accesses, the chances of observing inconsistencies is much higher, and the value
is also likely to be further from the correct value.

4.2.1. Leases

The problem with reads is that by the time the client gets the result, it could al-
ready be out of date, even without the additional complexity introduced by even-
tual consistency. Leases are a way of communicating how old a read is, by asso-
ciating it with a time in the future when it should be considered stale. First pro-
posed for file system caches to avoid needing to send explicit invalidations [33],
they are now used in application caches in modern datacenters, such as in Face-
book’s Memcache system [50]. In addition to simply bounding staleness without
explicit invalidation, leases can be used to indicate a promise that the value will
not be updated for some time.

Warranties [46] combine leases with reservations to grant permission for hold-
ers to perform specific updates for a fixed amount of time. This has the benefit
that permissions are automatically reclaimed after the time has elapsed, even if
the holder crashed, and saving a reply message if the recipient does not wish to
use the warranty.

12

sla = ShoppingCartSLA

add item to cart

c.put("bob:cart:7", "Star Wars T-Shirt")

get current cart

cart, consistency = c.get("bob:cart:*", sla)
0.5Eventual 300 ms

1.0300 msStrong

UtilityLatencyConsistency

Shopping Cart SLA

Figure 4. Example Consistency-based SLA: Shopping cart.

4.2.2. Probabilistically bounded staleness

In order to help programmers reason about staleness, Bailis et al. [12] introduced a
metric called probabilistically bounded staleness (PBS) which quantifies the staleness
of accesses, either in terms of time or versions. By observing the distributions of
propagation delays, round trip times, and rate of updates, their implementation
builds a model of the system and uses it to predict staleness during execution.
They also discussed how, by choosing the number of replicas to send writes to or
consult for reads, one can control staleness and suggested how PBS could be used
to select the right balance.

4.2.3. Consistency-based SLAs

With consistency-based SLAs [69], programmers can explicitly trade off consistency
for latency. A consistency SLA specifies a target latency and a consistency level
(e.g. 100 ms with read-my-writes). In this programming model, operations spec-
ify a set of desired SLAs, each associated with a utility. Using a prediction mecha-
nism similar to PBS, the Pileus system attempts to determine which SLA to target
to maximize utility, typically to achieve the best consistency possible within a cer-
tain latency.

Allowing users to specify their desired latencies and consistencies directly to
the system is powerful. However, because it is so fine-grained, the burden of
choosing target latencies and consistency for each operation could be quite high,
and it seems difficult to compose a sequence of operations and SLAs to achieve
an overall target latency or correctness criteria.

4.3. Review: Uncertainty

Figure 5 maps out the techniques we have covered along two axes: how much
they bound staleness versus how they restrict the set of allowable values. Again,
eventual consistency provides the least guarantees. In fact, most of the techniques
covered earlier do not affect staleness hardly at all. Instead, stronger consistency
models and the annotation-based techniques restrict possible values by eliminat-
ing conflicts. The major differentiator comes with the switch to using CRDTs to
restrict operations to those supported for each data type, like with ADTs. Bloom,
by restricting programs to monotonic transformations over CRDTs, has the most
bounded values.

Escrow and reservations can be very useful for bounding the uncertainty of
replicated data. They allow hard bounds to be enforced without preventing par-
allelism in most cases. Consider again the Star Wars ticket sales example from §1.
In order to handle the high load, we could replicate the tickets for this movie and
allow clients to purchase tickets from any replica, but then we would not be able to
prevent the same ticket from being sold to two different users. Using the concept
of escrow, however, we can divide the tickets among the replicas, allowing clients

13

Staleness Bounded

Indigo

CRDTs

Quelea

Consistency SLAs

EC

MW/MR/RYW

Causal

P
o

s
s
ib

le
 V

a
lu

e
s

Unbounded

A
n
y
th

in
g

B
o

u
n
d

e
d

PBS

High availability High latency

Leases

Sieve

Bloom

W
a
rr

a
n
ti
e
s

E
s
c
ro

w
 /

 R
e
s
e
rv

a
ti
o

n
s

Figure 5. Bounding uncertainty in terms of staleness and restricting values.

Coarse Fineper type per record
per

transaction
per

operation

Indigo

Revisions

CRDTs Quelea

Salt C. SLAs

EC

RYW

Causal

Sieve

MW/MR

Bloom RAMP Cassandra, …

Figure 6. Granularity of various techinques. What is the best way for trading off
consistency? For programmability?

to purchase them in parallel while there are many remaining, yet preventing tick-
ets from over-selling when they begin to run out. We will discuss this more in §7.

Along the axis of staleness, PBS provides additional knowledge, but little con-
trol. Leases, on the other hand, allow for a range of information about staleness to
be conveyed, and warranties provide additional control over how values change
by controlling permission to perform updates. Consistency SLAs allow latencies
and consistency levels to be traded off, giving control over both axes of uncer-
tainty to applications.

5. Programming model comparison

We have now discussed many techniques for balancing the tradeoffs between con-
sistency and performance in terms of how they manipulate constraints and bounds.
However, the various programming models also differ how they expect program-
mers to express their desires and what control they provide. What is the best gran-
ularity to express the high-level requirements of an application to the system? Fig-

14

Knowledge

Warranties

CRDTs

Consistency SLAs

MR/RYW Causal

PBS

Leases

Control

…

Figure 7. Which techniques provide additional knowledge (about uncer-
tainty/staleness/visibility), and which give control over these properties?

ure 6 organizes the programming models by levels of granularity: from coarse-
grained full-system models to fine-grained per-operation control. Figure 7 cate-
gorizes the techniques by whether they provide additional knowledge about the
system or whether they give explicit control to programmers.

We previously mentioned that consistency models are prohibitively coarse-
grained, especially considering that contention is the exceptional case and that
most transactions are not problematic for performance.

At the opposite extreme, some datastores, such as Cassandra, allow choosing
a consistency level for each operation. This places significant burden on pro-
grammers to select the level that is right for each use case: being too strict will
hurt performance, being too weak will result in errors. Moreover, this operation-
centric approach is not modular, as choices must be reconsidered each time a new
operation is introduced that may interleave.

CRDTs and isolation types from Concurrent Revisions occupy another spot in
the granularity space – they specify constraints in terms of types. This allows them
to couple consistency with state – a data-centric approach. Indigo and Bloom
associate application-level invariants with types.

High-level approaches – Indigo, Quelea, Sieve, and Bloom – automate the pro-
cess of analyzing where coordination must occur and selecting appropriate syn-
chronization to ensure correctness. This automation relieves programmers of the
error-prone task of selecting fine-grained consistency levels and allows them to
better span the constraint axes. Automation aids modularity as well – synthesized
coordination rules can be adjusted whenever new functionality is added. In or-
der to do their job, these systems must know about the abstract state and behavior
(together we will refer to these as semantics) which make up the application. In
Indigo, semantics are exposed manually in pre- and post-condition annotations;
similarly in Blazes. In Bloom, the semantics are implicit in the monotonic struc-
tures used to build the application, so no additional annotation is required.

Expressing abstract state and behavior by construction, as in Bloom, is pow-
erful. It is less burdensome and error-prone than manual annotation and more
reusable. We have chosen to focus on abstract data types because they support this
by-construction expression of semantics but are more natural for programmers to
use than Bloom’s statements and facts. As with CRDTs, there may need to be many
variants of data types in order to capture the desired consistency/performance
properties desired by each application, but ADTs still allow significant re-use.

In the remaining sections of this paper we will show how we have used ADTs
to express application semantics, describe prior techniques of leveraging ADTs,
and show how we have extended them.

15

6. Mitigating Contention with Abstract Data Types

In order to perform contention mitigation techniques, the system must have knowl-
edge of the desired application semantics. Our solution to this problem is an old
one: abstract data types (ADTs). The core idea of ADTs is to present a clear ab-
stract model of state and behavior, while hiding all the implementation details. With
ADTs, applications describe their semantics to the underlying system by construc-
tion, allowing it to take advantage of properties, such as commutativity, to reduce
coordination, avoid conflicts, and improve performance. All the details of order-
ing constraints, visibility, and coordination can be hidden behind the abstraction
of data types with well-defined behavior.

ADTs are a natural interface for developers to express application semantics.
They understand how a Set ADT behaves, and the system knows from a spec-
ification like Table 2 under which circumstances operations commute, or how
to fragment the type for escrow. Programmers can maximize the optimizations
available to the system by selecting the most specific ADT for their situation.
For instance, incrementing a generic Counter must return the next number, but
a UniqueIDGenerator lifts that restriction and so can generate non-sequential IDs
in parallel. Programmers can even provide their own application-specific ADTs
or customize existing ones to make them more suitable.

The concept of ADTs has long been used to extend databases: supporting in-
dices and query planning for custom data types [65, 66], and concurrency con-
trol via abstract locks [8, 24, 36, 72]. Today’s distributed systems deal with new
challenges, and have evolved the many techniques described above to solve them.
Unfortunately, many of the lessons learned about the benefits of the ADT abstrac-
tion were not carried forward into modern distributed systems. Many were lost
in the move from relational databases to “NoSQL” datastores. We are just now be-
ginning to figure out how to leverage type-level semantics in systems with weak
replication through CRDTs and Bloom.

My work has pushed for the use of ADTs to allow systems to better mitigate
the capricious, high-contention situations that cause so much trouble to applica-
tions. In Grappa, a high-performance system for irregular data analytics, we used
combining to improve throughput on globally shared data structures. In Claret,
we showed how ADTs can be used to improve performance of distributed trans-
actions. Finally, I will propose Disciplined Inconsistency, a way to safely trade off
consistency for performance with approximate ADTs.

6.1. Combining with global data structures in Grappa

Grappa [49] is a system we built for irregular data analytics. In order to toler-
ate the latency of communicating between nodes in commodity clusters, Grappa
requires significant concurrency. Luckily, applications like graph analytics typi-
cally have abundant data parallelism that can be exploited. Such applications often
require shared data structures to store the data itself (such as a graph), collect in-
termediate results, and support the underlying runtime. Because of the massive
number of parallel threads needed for latency tolerance, these shared, distributed
data structures are a source of significant contention. Naive locking strategies,
even fine-grained, result in excessive serialization, preventing these data struc-
tures from being used as intended.

Combining [34, 61, 75] is a technique that can reduce contention on shared data
by distributing synchronization. Basically, combining exploits the associativity of
some ADT operations, merging them together into a single combined operation
before applying the combined operation on the shared data structure. For exam-
ple, individual Set.add operations can be combined into a single operation that

16

Method Commutes with When
add(x): void add(y) ∀x, y

remove(x): void remove(y) ∀x, y

add(y) x ̸= y

size(): int add(x) x ∈ Set

remove(x) x ̸∈ Set

contains(x): bool add(y) x ̸= y ∨ y ∈ Set

remove(y) x ̸= y ∨ y ̸∈ Set

size() ∀x

Table 2. Abstract Commutativity Specification for Set.

adds multiple elements. Doing so moves some of the synchronization off of the
hot data structure – now several separate synchronizations are just one. This is
useful because combining can be done in parallel on many different threads. In
some situations, operations even annihilate one another – that is, they cancel each
other out, as is the case with a push and pop to a stack – which eliminates any need
for global coordination of those particular operations.

Combining has been used in many different shared-memory systems to re-
duce contention and data movement. In a similar way, MapReduce allows a com-
biner to be defined to lift part of the reducer’s work into the mapper [28]. We
applied the concept to Grappa’s distributed shared data structures and observed
significant performance improvements [38]. In the distributed setting, combining
can be even more effective as local synchronization within a node can eliminate
many costly round-trip communications to other nodes. We also developed an
extensible framework for developing data structures with combining for Grappa
applications.

6.2. Claret: abstract data types for high-contention transactions

One of the most popular key/value stores in use today is Redis [55], which is spe-
cial in that it supports a much wider range of complex data types and many oper-
ations specific to each type. However, Redis does not support general distributed
transactions because they are considered too expensive. We observed that by
treating Redis’s data types as ADTs, we could expose significantly more concur-
rency between transactions to make them practical even for high-contention work-
loads. One technique crucial to this is abstract locks.

6.2.1. Abstract locks

Databases commonly use reader/writer locks to control access to records in con-
junction with a protocol such as two-phase locking to ensure isolation between
transactions. With reader/writer locks, multiple readers can hold the lock at the
same time because they do not modify it, but anyone wishing to perform muta-
tion must hold an exclusive writer lock. Abstract locks [8, 24, 36, 58, 72] generalize
this notion to any operations which can logically run concurrently on the same
object. Abstract locks are defined for a particular ADT in terms of a commutativity
specification which describes with pairs of operations commute with one another:
a function of the methods, arguments, return values, and abstract state of their
target. An example specification for a Set is shown in Table 2.

17

When used in the context of transactions (termed transaction boosting), abstract
locks can drastically reduce conflicts by allowing more operations to execute con-
currently on the same record [35]. This is particularly crucial for highly contended
records, where the chances of having concurrent operations is high, and serializ-
ing operations can become a bottleneck. In essence, abstract locks allow trans-
actions to overlap more, only serializing when they absolutely must in order to
ensure they cannot observe inconsistent state.

6.2.2. Claret

Our prototype ADT-store, Claret, has a similar programming model to Redis.
Underneath the abstraction afforded by the ADTs, Claret implements abstract
locks, combining, and a form of lock reordering called phasing. On three transac-
tional workloads simulating realistic contention – a microbenchmark similar to
YCSB+T [29], an online auction service [6], and a Twitter-like social network [56]
– Claret achieved a 3-50x speedup over naive transactions and within 67-82% of
the performance without transactions.

6.3. Reveling in the bounty of inaccuracy

The ADTs used in Grappa and Claret exposed concurrency without sacrificing
safety or correctness. This imposed a limit to the amount of concurrency they
could exploit. We compared the performance of Claret’s transactions against the
same workloads without transactions. Though Claret’s transactions were com-
petitive, they fundamentally could not out-perform the non-transactional work-
load because they could not allow conflicting operations to be executed concur-
rently. For example, no matter how much commutativity abstract locks could
expose, Bid and ViewAuction transactions had to be separated because ViewAuction

required viewing the current maximum bid. What if we could relax this require-
ment and allow clients to view inaccurate results? What can be done to make this
as safe as possible?

As we have discussed throughout this paper, there are significant performance
benefits to be had by relaxing consistency and exposing weak replication. To give
developers full control over these opportunities, we must allow them to trade off
consistency in their applications. Our next project proposes to do just that by
defining a new class of ADTs.

7. Disciplined Inconsistency

Our goal is to come up with a programming model that helps programmers bal-
ance all of these competing requirements; ideally, it should have the following
properties:

• Minimize unnecessary constraints by exposing safe concurrency.
• Express where and what errors can be tolerated.
• Communicate performance requirements such as target latency or availabil-

ity.
• Be easy to reason about and modular.

At this point we have well established that trading off consistency for perfor-
mance is tricky business, involving making many decisions about what reorder-
ings of operations should be allowed, when updates must be visible in order to
ensure correct execution, or how consistent a read can be and still meet its la-
tency SLA. Furthermore, programmers must make these decisions while keeping

18

!

"

Remaining: 3.4M

Movie Tickets

STAR WARS

!

"

Remaining: 5

Movie Tickets

STAR WARS

3,395,442 5

Soft bounds
while many
remaining.

Hard bound
at the end.

// derive app-specific type from generic IPA type

using MovieTickets = Pool<TicketID, Millis(100)>;

// Pool supporting unique `take`s

// bounded by initial size, and

// reading an approximate size.

template< typename T,

 Time Latency >

class Pool : IPAType {

 T take();

 // return the range of possible

 // current sizes

 Range<int> size();

};

Figure 8. A MovieTicket ADT can be implemented using a more generic Pool type.
Ticket sales must be strongly consistent, but the number of remaining tickets can
be approximate, provided it gets more precise when there are few remaining.

in mind that due to real-world effects, some data items will be significantly more
contentious and inconsistent than others. The promise of ADTs is to hide imple-
mentation details – can we use them to hide some of these concerns?

Yes! Inconsistent, Probabilistic and Approximate (IPA) types can express weaker
constraints on ADTs, unlocking the possibility of using the techniques we have
discussed to trade off consistency for performance. Operations on IPA types only
allow views of the state that can assure correct semantics, which may mean dis-
allowing operations that would expose too much, or exposing values that encode
a range or distribution rather than a precise value. IPA types encapsulate the or-
dering and visibility constraints necessary for whatever operations they allow, so
users do not need to interact with complex consistency models, and these types
can subsequently be composed. Of course, it leaves programmers with a different
set of problems to deal with, which we will get to, but which we posit are a better
alternative.

Let us consider again the scenario posed at the beginning, about a ticket sales
app that failed to handle the load when the new Star Wars movie came out. Its
programmers likely had several requirements in mind for the app’s behavior:

1. Do not sell more tickets than are available.
2. Let users see an estimate of how many tickets remain when they load the

page.
3. Initial page load must have a 99th percentile latency of 100 ms.

If we allow two replicas to both sell the last ticket, we will violate the first require-
ment, so our model must express this as a hard constraint. Using escrow, we can
distribute permissions to sell tickets among the replicas so that while there are
many tickets remaining, the requests can be handled by any replica safely. How-
ever, now providing a precise count of remaining tickets requires synchronizing
all replicas. Luckily, (2) tells us that the count does not need to be precise, which
allows us to meet (3)’s latency requirement by accessing whichever replica is near-
est or fastest.

Figure 8 shows a possible way of specifying this movie ticket sale as an IPA
type. In this example, we derive our MovieTickets type from a generic Pool that
ensures take operations are unique and upper-bounded by the number of items in
the pool and supports reading an approximate size. Without some form of bound,
the approximate size is somewhat underspecified. In this case the MovieTickets

type requested a bounded latency of 100 milliseconds, which serves to determine
how the size will be obtained and how approximate it will be. Alternatively, we

19

could imagine a different application wishing to instead specify a target value
bound, such as a maximum 10% error. We address this duality between perfor-
mance and precision next.

7.1. Duel of duals

Consistency and performance are coupled – more consistency requires coordi-
nation which costs performance; achieving performance targets may require sac-
rificing consistency. We have covered many techniques that acknowledge this
tradeoff and allow applications either to specify weaker consistency in order gain
performance or specify coordination requirements and give up some performance.
However, only Pileus’s consistency-based SLAs [69] made performance targets
explicit and provided feedback to programs about the consistency achieved.

It is common today for the specifications for applications to include perfor-
mance bounds, such as target latencies specified by an SLA, or the requirement that
a service be highly available. More strict performance bounds imply more uncer-
tainty in terms of values – consistency is weaker, reads are forced to take whatever
they can get, even if it is stale. Because it is not surfaced explicitly, this increase
in uncertainty can go unaddressed, leading to noticeable consistency issues later.
Instead, can we make these uncertainties explicit in the programming model, en-
suring programmers handle them correctly?

In other situations, perhaps only a certain amount of error can be tolerated.
For example, when viewing a tweet with only a few retweets, one would expect
the count to be exact, because being off by even 1 would be obvious. However,
when viewing a super popular tweet, like a Justin Bieber selfie, the number of
retweets could be in the millions, so it can be off by thousands. In these situa-
tions, it would be useful to be able to specify an error tolerance, such as a 5% toler-
ance on the count. As the dual of performance-bounded operations, perhaps the
programming model ought to provide estimates of the performance uncertainty for
operations with bounded error.

In this work, we aim to provide all of these as options so that no matter the
situation, programmers have the tools they need to make those tradeoffs.

As an aside, the goals of BlinkDB [1] bear a lot of similarity to ours, except they
trade off the amount of data touched rather than consistency. In BlinkDB, SQL
queries with aggregates (such as count or average) are annotated with either time
bounds or error bounds, and the database uses sampling to get the best answer it can
within the bounds. Their approach requires partial knowledge of the distribution
and maintenance of “stratified samples” in order to be able to estimate the error
with confidence. We will need different approaches to estimate error under weak
consistency.

7.2. Programming model

What kinds of approximations do we need to be able to express? How do they
manifest themselves as ADTs? In the Disciplined Inconsistency programming model,
bounds are defined on ADTs, and operations return IPA types.

7.2.1. Specifying bounds on ADTs

There are several forms of constraints which we will aim to support. These in-
clude some of the constraints supported by Indigo [13] that are compatible with
ADTs, extended with new hard and soft constraints. We expect bounds to typically
be expressed on application-specific ADTs, as in Figure 8 and Figure 9.

20

Numeric constraints. These can apply either to simple standalone numeric val-
ues, or more commonly to integer quantities associated with data structures, such
as the cardinality of a Set. Constraints can be hard upper or lower bounds, or a
tolerance of some distance from the precise value (such as the 10% tolerance we
mentioned earlier). Uniqueness, a common desirable constraint [10, 13], is a de-
generate case with an upper bound of 1.

Filter or membership constraints. Akin to bloom filters, applications may wish
to ensure with some probability that a set contains all of the correct values. Using
approximate reservations or PBS, the system could have some idea of whether any
new items had been added to a container ADT. Applications wishing to use even
more fine-grained “filters” could specify that items fitting a certain description
should be handled differently. For example, Facebook may wish to guarantee that
close friends’ posts appear consistently on a user’s timeline, while others can be
opportunistic.

Latency bound. To meet latency SLAs, operations can have specified latency
bounds. Using a mechanism like Pileus’s predictive monitors, the system could
choose which replicas to use in order to meet certain latency requirements. These
bounds cannot be hard bounds, so, like real SLAs, they would typically be associ-
ated with a target percentile.

Availability requirement. If a situation demands high availability, regardless of
cost, then it could use a constraint like this to ensure that the system returns a
result from any available replica without mediation.

7.2.2. IPA Types

Most operations with a performance or value bound will return a value with some
form of uncertain type, depending on how the bound is fulfilled. These types fall
into 3 different categories: inconsistent, probabilistic, or approximate.

Approximate types. These types are the simplest for programmers to use, and
should be preferred. Approximate types encode the set of all possible correct val-
ues. Note that in situations of replication, there is likely no single globally cor-
rect value – different replicas can hold different values simultaneously, and there
could be any number of staged operations whose final commit order is yet un-
known. Example approximate types include Interval<T>, which specifies an up-
per and lower bound on possible types. Any type with a defined partial order over
values (a lattice) can be represented as an interval: numeric types are obvious, but
a set, for example, could have an interval defined by a number of items that may
or may not be in the set. An interval could also be defined as a point and radius –
for example, a mean ± 5% – depending on the desired semantics.

Probabilistic types. In some situations, guaranteeing the hard bounds encoded
by approximate types is too expensive. Bounds can be weakened by providing a
probabilistic guarantee instead. These typically take the form of a distribution,
such as a gaussian defined by a mean and standard deviation, with a certain con-
fidence level. For example, PBS’s models do not ensure hard bounds on staleness
but rather a probability distribution that defines whether it is correct or not. We
expect programmers to use these types for simple inference questions, such as “Is

21

the value greater than 100 with 95% confidence?”, in order to determine if some-
thing should be displayed. This is closely related to how Uncertain<T> [18] allows
programmers to reason about uncertain values coming from sensors.

Inconsistent types. Finally, in the worst cases, there may be no way to bound the
potential values. For instance, any technique providing hard bounds may need to
limit the rate at which updates are applied to replicas. If absolute maximum avail-
ability or throughput is required, then those restrictions cannot be applied. How-
ever, we can still help programmers be disciplined about these unsafe cases using
inconsistent types. These types are the most opaque. At best, they may provide a
measure of staleness, such as a Stale<T>, which would allow users to know how out
of date the value is, and potentially surface this to the user. An example of this is
shown in Figure 9. However, even a nearly completely opaque Inconsistent<T> can
help protect inconsistent values from accidentally flowing into consistent compu-
tations, similar to how taint analysis prevents secure values from being leaked.

7.3. Implementation

Our implementation involves developing the frontend programming model – IPA
types with value and performance bounds – and a backend enforcement system
which integrates many of the prior techniques covered in this document.

7.3.1. Enforcement system

The prior techniques discussed in this document provide ample ways to enforce
invariants and perform efficient coordination. We will focus primarily on escrow,
reservations, and leases, integrated with ideas from abstract locks to implement most
of the coordination required for approximate types. Indigo [13] demonstrated one
way of combining abstract locks (“multi-level locks” in their terminology) with
reservations to implement the wide range of constraints they supported. For in-
stance, numeric constraints can be implemented using escrow to distribute permis-
sions among all the replicas. For example, to implement our Pool type from Fig-
ure 8, we could create an escrow piece for each ticket ahead of time, then distribute
those among the replicas. When clients execute a take, a piece is allocated from
the pool of remaining operations. If the take aborts before finishing, the piece is
simply returned to the pool. Likewise if a replica goes offline, the pieces are not
actually lost – they can be reclaimed after a period of time and re-used.

Another component of the enforcement system will behave similarly to PBS
and Pileus’s consistency SLA system, to provide probabilistic uncertainty. In these
systems, hard guarantees are not enforced as with escrow reservations. Instead,
this subsystem monitors various health metrics about the system: replication la-
tency, write load, etc. These factors can then be fed into simple predictive models
to make judgements about the probability that a given value is being updated cur-
rently.

Largely unmodified CRDTs provide the basis for data types that do not pre-
vent conflicts. Operations on these types should return some form of IPA type –
by default, just an Inconsistent<T>, but if version vectors or other staleness infor-
mation is available, more expressive IPA types can be used.

7.3.2. Implementation strategy

As a first pass, the programming model will simply be hand-written data types
supporting a small number of configurable latency and value bounds. These data

22

def timeline(user):

 # Timeline.range: 100 ms latency bound

 tweets: Stale<List<ID>> = Timeline(user).range(0, 10)

 # check if timeline may be missing tweets older than 5s

 if posts.older_than(Seconds(5)):

 display_warning("May be out of date.")

 for t in tweets:

 tweet: Map = Tweet(t).get()

 # Retweeters.size: 1% tolerance

 retweets: Range<Int> = Retweets(t).size()

 display_tweet(tweet, retweets)

derive app-specific types from generic IPA types

using Timeline = SortedSet<ID,Range<Millis(100)>>;

using Retweets = Set<ID,Size<Tolerance(0.01)>>;

Figure 9. Twitter clone: Loading a user’s timeline with IPA types.

types will at first manually specify how they are to be enforced using components
from the enforcement system described above.

Once we have established the potential using manual implementation, we will
investigate ways of automatically generating the correct enforcement given spec-
ified latency bounds and IPA types. Another avenue of potential investigation is
to see if the bounds annotations can be used to infer the correct IPA types, or at
least do static type checking to ensure that the interface is enforceable with the
desired bounds.

7.4. Case studies

7.4.1. Twitter

Twitter is subject to all kinds of extreme contention resulting from realtime events,
and power law effects. Famously, early in Twitter’s lifetime, it would go down any
time traffic spiked, such as during World Cup goals; each time showing the now
famous Fail Whale [39]. Even late in its life, Twitter was slowed to a standstill at
the 2014 Oscars when Ellen Degeneres tweeted a selfie with several celebrities
which was retweeted at record-breaking speed. Luckily, there are many aspects
of Twitter that are amenable to inconsistency. In fact, most of the real Twitter
application is served out of their eventually consistent datastore, Manhattan [57].
However, if we can quantify specific places where accuracy is unnecessary, per-
haps we will not need to give up consistency everywhere else.

Followers, retweets, favorites counts. As mentioned before, for an extremely
popular tweet, these counts are truncated – Justin Bieber’s profile lists that he has
“69.8M” followers rather than the precise value, because it is constantly changing
(but not often by more than 100,000…), and his most recent tweet was retweeted
“20K” times. On the other hand, most tweets have few favorites, and if those
counts are off they will be noticed. This is a perfect place for a tolerance-based
constraint that will scale with the size of the count.

Missing tweets. Another possible relaxation is which tweets appear in a time-
line. If a timeline is missing a recent tweet, odds are good the user will not be able
to tell. This may be a situation where a performance bound is called for – no one

23

wants to wait a long time for their timeline. This could then return a measure of
the staleness of the timeline, such as the latest point in time before which tweets
are guaranteed to be included.

For Claret, we implemented a simplified Twitter clone based on a Redis ap-
plication called Retwis [56]. This application will be extended to use disciplined
inconsistency to further improve performance and availability.

7.4.2. Auction

Auction services are generally considered a class of applications requiring strong
consistency. Finding the correct maximum bid, in spite of any amount of traffic,
is crucial for fairness. However, they also have significant contention problems
as some auctions receive far more bids than the average (they follow a power law),
and bidding ramps up right before the auction closes. Allowing as many bids as
possible during that late stage is crucial to keeping users happy and maximizing
revenue. We base our implementation on the functionality of Rubis [6].

Current high bid. While an auction is ongoing, users typically want to know
what the going rate is so they can decide if they are willing to over-bid. If this is
changing frequently, the high bid is going to change rapidly. At that point, users
are unable to really tell what the current bid will be when they actually make their
own bid. Therefore, they probably do not need to see the most precise version
of the bid. Some estimate of the current maximum bid, provided it is reasonably
accurate, is acceptable because the true high bid can still be found later. This is
an ideal situation for a latency-bound operation that returns a range of possible
values or a probability distribution.

Stale listings. Rubis allows clients to browse currently open auctions by region
or category. In this view, one could imagine wanting to show an estimate of the
price and other relevant information about the auctions. However, it could be
prohibitively expensive to get accurate, up-to-date bid information. Furthermore,
in large deployments, popular categories could have many new auctions opening
constantly. These both seem like situations where a stale version, either of the list
of current auctions, or the current bids for each auction, would be acceptable.

7.4.3. Ticket Sales

We have used the movie ticket sales example throughout this paper, but to reit-
erate, there are a number of interesting challenges in supporting ticket sales. The
movie ticket example is a bit contrived because no one theater will have all that
many seats available, so contention will be distributed even for popular movies.
However, ticket sales for other events with much larger venues can experience
serious problems with contention. We already discussed how the remaining tickets
field is a candidate for approximation.

FusionTicket [30] is an open source web application for selling tickets to events
that has been used in some recent transactions research as a benchmark [73, 74].
We could use this benchmark as a starting point and look for additional places
where contention is a problem and where error can be tolerated.

7.4.4. Streaming analytics

Trending topics, realtime recommendations, and performance monitoring are
just a few examples of the kinds of analytics services like Twitter or Facebook
perform continuously. These features can be crucial to user engagement. How-
ever, they can also typically be treated as a best-effort or “nice to have” addition
to the experience; whenever performance becomes a problem, these features can

24

be dialed back. Furthermore, they are typically informed by machine learning al-
gorithms which introduce significant noise. Therefore, they are prime candidates
for disciplined inconsistency.

One concrete example: Twitter’s revamped streaming analytics platform, Heron [41],
supports a feature called backpressure. When a downstream processing element
becomes overloaded and is unable to keep up with the rate of incoming data, it
will fall behind and no longer be realtime. Backpressure tells upstream data gen-
erators to dial back their output, typically done by sampling, until the backlog
is under control and processing returns to normal. This can cause discontinu-
ities in the output of analytics which may persist if programmers do not handle
it correctly. Perhaps some form of probabilistic data type could be used to com-
municate the sampling rate of data items, making it simpler for programmers to
handle these cases.

8. Conclusion

To navigate the treacherous seas of the Internet, today’s distributed applications
must be ready to cut through the waves of contention. Many capable techniques,
like abstract locks, escrow, and consistency-based SLAs, are on hand, but the ship
that holds them together is the abstraction afforded by ADTs. ADTs give program-
mers a powerful way to express application semantics by construction; IPA types
allow them to trade off performance for precision in a disciplined way. Rather
than battening down the hatches just to stay afloat, by adjusting the sails just right
to handle the gusts, applications can sail on through the storm.

References

[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel
Madden, and Ion Stoica. “BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data.” In Proceedings of the 8th ACM
European Conference on Computer Systems, 29–42. EuroSys ’13. ACM, New
York, NY, USA. 2013. doi:10.1145/2465351.2465355.

[2] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. “Adaptive Work
Stealing with Parallelism Feedback.” In Proceedings of the 12th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, 112–120.
PPoPP. ACM, New York, NY, USA. 2007. doi:10.1145/1229428.1229448.

[3] Paulo Sérgio Almeida, and Carlos Baquero. “Scalable Eventually Consistent
Counters over Unreliable Networks.” CoRR abs/1307.3207. 2013. http://
arxiv.org/abs/1307.3207.

[4] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R Marczak. “Con-
sistency Analysis in Bloom: A CALM and Collected Approach.” In Conference
on Innovative Data Systems Research (CIDR), 249–260. CIDR. Citeseer. 2011.

[5] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. “Blazes:
Coordination Analysis for Distributed Programs.” In IEEE International Con-
ference on Data Engineering. Institute of Electrical
& Electronics Engineers (IEEE). Mar. 2014. doi:10.1109/icde.2014.6816639.

[6] Cristiana Amza, Anupam Chanda, Alan L. Cox, Sameh Elnikety, Romer Gil,
Karthick Rajamani, Willy Zwaenepoel, Emmanuel Cecchet, and Julie Mar-
guerite. “Specification and Implementation of Dynamic Web Site Bench-

25

https://dx.doi.org/10.1145/2465351.2465355
https://dx.doi.org/10.1145/1229428.1229448
http://arxiv.org/abs/1307.3207
http://arxiv.org/abs/1307.3207
https://dx.doi.org/10.1109/icde.2014.6816639

marks.” In 2002 IEEE International Workshop on Workload Characterization.
IEEE. 2002. doi:10.1109/wwc.2002.1226489.

[7] Apache Software Foundation. “Cassandra.” http://cassandra.apache.org/.
2015.

[8] B. R. Badrinath, and Krithi Ramamritham. “Semantics-Based Concurrency
Control: Beyond Commutativity.” ACM Transactions on Database Systems,
TODS, 17 (1). Association for Computing Machinery (ACM): 163–199. Mar.
1992. doi:10.1145/128765.128771.

[9] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. “Highly Available Transactions: Virtues and Limita-
tions.” Proceedings of the VLDB Endowment, VLDB, 7 (3). VLDB Endowment:
181–192. Nov. 2013. doi:10.14778/2732232.2732237.

[10] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. “Feral Concurrency Control.” In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data
- SIGMOD 15. Association for Computing Machinery (ACM). 2015.
doi:10.1145/2723372.2737784.

[11] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion
Stoica. “Scalable Atomic Visibility with RAMP Transactions.” In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of
Data - SIGMOD 14. Association for Computing Machinery (ACM). 2014.
doi:10.1145/2588555.2588562.

[12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Heller-
stein, and Ion Stoica. “Probabilistically Bounded Staleness for Practical Par-
tial Quorums.” Proceedings of the VLDB Endowment 5 (8). VLDB Endowment:
776–787. Apr. 2012. doi:10.14778/2212351.2212359.

[13] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. “Putting Consistency Back
into Eventual Consistency.” In Proceedings of the Tenth European Conference
on Computer Systems, 6:1–6:16. EuroSys. ACM, New York, NY, USA. 2015.
doi:10.1145/2741948.2741972.

[14] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. “Towards Fast Invariant
Preservation in Geo-Replicated Systems.” ACM SIGOPS Operating Systems
Review 49 (1). Association for Computing Machinery (ACM): 121–125. Jan.
2015. doi:10.1145/2723872.2723889.

[15] Valter Balegas, Diogo Serra, Sergio Duarte, Carla Ferreira, Marc Shapiro,
Rodrigo Rodrigues, and Nuno Preguiça. “Extending Eventually Consistent
Cloud Databases for Enforcing Numeric Invariants.” 34th International Sym-
posium on Reliable Distributed Systems (SRDS 2015), September. Sep. 2015.

[16] Daniel Barbará-Millá, and Hector Garcia-Molina. “The Demarcation Proto-
col: A Technique for Maintaining Constraints in Distributed Database Sys-
tems.” The VLDB Journal 3 (3). Springer Science $$ Business Media: 325–353.
Jul. 1994. doi:10.1007/bf01232643.

[17] Inc.} Basho Technologies. “Riak.” http://docs.basho.com/riak/latest/. 2015.

26

https://dx.doi.org/10.1109/wwc.2002.1226489
http://cassandra.apache.org/
https://dx.doi.org/10.1145/128765.128771
https://dx.doi.org/10.14778/2732232.2732237
https://dx.doi.org/10.1145/2723372.2737784
https://dx.doi.org/10.1145/2588555.2588562
https://dx.doi.org/10.14778/2212351.2212359
https://dx.doi.org/10.1145/2741948.2741972
https://dx.doi.org/10.1145/2723872.2723889
https://dx.doi.org/10.1007/bf01232643
http://docs.basho.com/riak/latest/

[18] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley.
“Uncertain<T>: A First-Order Type for Uncertain Data.” In Proceedings
of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS 14. ASPLOS. Association for
Computing Machinery (ACM). 2014. doi:10.1145/2541940.2541958.

[19] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. “Summingbird:
A Framework for Integrating Batch and Online MapReduce Computations.”
Proceedings of the VLDB Endowment, VLDB, 7 (13). VLDB Endowment: 1441–
1451. Aug. 2014. doi:10.14778/2733004.2733016.

[20] Eric A. Brewer. “Towards Robust Distributed Systems.” In Keynote at PODC
(ACM Symposium on Principles of Distributed Computing). Association for Com-
puting Machinery (ACM). 2000. doi:10.1145/343477.343502.

[21] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. “Concurrent
Programming with Revisions and Isolation Types.” In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and
Applications - OOPSLA’10. OOPSLA. Association for Computing Machinery
(ACM). 2010. doi:10.1145/1869459.1869515.

[22] Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Mooly Sa-
giv. “Eventually Consistent Transactions.” In Proceedings of the 22n European
Symposium on Programming (ESOP). Springer. Mar. 2012. http://research.

microsoft.com/apps/pubs/default.aspx?id=158085.

[23] Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Benjamin
P. Wood. “Cloud Types for Eventual Consistency.” In Proceedings of
the 26th European Conference on Object-Oriented Programming (ECOOP).
ECOOP. Springer. Jun. 2012. http://research.microsoft.com/apps/pubs/

default.aspx?id=163842.

[24] Panos K. Chrysanthis, S. Raghuram, and Krithi Ramamritham. “Extracting
Concurrency from Objects.” In Proceedings of the 1991 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’91). SIGMOD. Association
for Computing Machinery (ACM). 1991. doi:10.1145/115790.115803.

[25] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and
David Maier. “Logic and Lattices for Distributed Programming.” In Proceed-
ings of the Third ACM Symposium on Cloud Computing - SoCC 12. SoCC. ACM
Press. 2012. doi:10.1145/2391229.2391230.

[26] Natacha Crooks, Nancy Estrada, Lorenzo Alvisi, and Allen Clement.
TARDiS: Transactional Storage with Parallel Worlds. 2186. University of Texas
at Austin. Jan. 2015. http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-
2186.pdf.

[27] Jeffrey Dean, and Luiz André Barroso. “The Tail at Scale.” Communications of
the ACM 56 (2). Association for Computing Machinery (ACM): 74. Feb. 2013.
doi:10.1145/2408776.2408794.

[28] Jeffrey Dean, and Sanjay Ghemawat. “MapReduce: Simplified Data Process-
ing on Large Clusters.” Communications of the ACM 51 (1). ACM: 107–113.
2008.

[29] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. “YCSB+T:
Benchmarking Web-Scale Transactional Databases.” In IEEE Interna-
tional Conference on Data Engineering Workshops (ICDEW). Mar. 2014.
doi:10.1109/icdew.2014.6818330.

27

https://dx.doi.org/10.1145/2541940.2541958
https://dx.doi.org/10.14778/2733004.2733016
https://dx.doi.org/10.1145/343477.343502
https://dx.doi.org/10.1145/1869459.1869515
http://research.microsoft.com/apps/pubs/default.aspx?id=158085
http://research.microsoft.com/apps/pubs/default.aspx?id=158085
http://research.microsoft.com/apps/pubs/default.aspx?id=163842
http://research.microsoft.com/apps/pubs/default.aspx?id=163842
https://dx.doi.org/10.1145/115790.115803
https://dx.doi.org/10.1145/2391229.2391230
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2186.pdf
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2186.pdf
https://dx.doi.org/10.1145/2408776.2408794
https://dx.doi.org/10.1109/icdew.2014.6818330

[30] “Fusion Ticket.” http://fusionticket.org.

[31] Dieter Gawlick, and David Kinkade. “Varieties of Concurrency Control in
IMS/VS Fast Path.” IEEE Database Engineering Bulletin, DEBU, 8 (2): 3–10.
1985.

[32] Seth Gilbert, and Nancy Lynch. “Brewer’s Conjecture and the Feasibil-
ity of Consistent, Available, Partition-Tolerant Web Services.” SIGACT
News 33 (2). Association for Computing Machinery (ACM): 51. Jun. 2002.
doi:10.1145/564585.564601.

[33] C. Gray, and D. Cheriton. “Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency.” In ACM Symposium on Operating Sys-
tems Principles (SOSP). SOSP. Association for Computing Machinery (ACM).
1989. doi:10.1145/74850.74870.

[34] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. “Flat Com-
bining and the Synchronization-Parallelism Tradeoff.” In Proceedings of the
22nd ACM Symposium on Parallelism in Algorithms and Architectures, 355–364.
SPAA. ACM. 2010.

[35] Maurice Herlihy, and Eric Koskinen. “Transactional Boosting: A Method-
ology for Highly-Concurrent Transactional Objects.” In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, 207–216. PPoPP. Salt Lake City, UT, USA. 2008.
doi:10.1145/1345206.1345237.

[36] Maurice P. Herlihy, and William E. Weihl. “Hybrid Concurrency Control for
Abstract Data Types.” In Proceedings of the Seventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 201–210. PODS. ACM,
New York, NY, USA. 1988. doi:10.1145/308386.308440.

[37] Maurice P. Herlihy, and Jeannette M. Wing. “Linearizability: A Correct-
ness Condition for Concurrent Objects.” ACM Transactions on Programming
Languages and Systems 12 (3). Association for Computing Machinery (ACM):
463–492. Jul. 1990. doi:10.1145/78969.78972.

[38] Brandon Holt, Jacob Nelson, Brandon Myers, Preston Briggs, Luis Ceze, Si-
mon Kahan, and Mark Oskin. “Flat Combining Synchronized Global Data
Structures.” In International Conference on PGAS Programming Models (PGAS).
PGAS. Oct. 2013. http://sampa.cs.washington.edu/papers/holt-pgas13.pdf.

[39] Mat Honan. “Killing the Fail Whale With Twitter’s Christopher Fry.” http://
www.wired.com/2013/11/qa-with-chris-fry/. Nov. 2013.

[40] Eric Koskinen, and Matthew Parkinson. “The Push/Pull Model of Trans-
actions.” In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). PLDI. Association for Computing Machinery (ACM).
2015. doi:10.1145/2737924.2737995.

[41] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christo-
pher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. “Twitter Heron: Stream Processing at Scale.” In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, 239–250. SIGMOD ’15. ACM, New York, NY, USA. 2015.
doi:10.1145/2723372.2742788.

28

http://fusionticket.org
https://dx.doi.org/10.1145/564585.564601
https://dx.doi.org/10.1145/74850.74870
https://dx.doi.org/10.1145/1345206.1345237
https://dx.doi.org/10.1145/308386.308440
https://dx.doi.org/10.1145/78969.78972
http://sampa.cs.washington.edu/papers/holt-pgas13.pdf
http://www.wired.com/2013/11/qa-with-chris-fry/
http://www.wired.com/2013/11/qa-with-chris-fry/
https://dx.doi.org/10.1145/2737924.2737995
https://dx.doi.org/10.1145/2723372.2742788

[42] Lamport. “How to Make a Multiprocessor Computer That Correctly Ex-
ecutes Multiprocess Programs.” IEEE Transactions on Computers C-28 (9).
Institute of Electrical
& Electronics Engineers (IEEE): 690–691. Sep. 1979.
doi:10.1109/tc.1979.1675439.

[43] Leslie Lamport. “Paxos Made Simple.” ACM SIGACT News 32. 2001.

[44] Cheng Li, Joao Leitão, Allen Clement, Nuno Preguiça, Rodrigo Ro-
drigues, and Viktor Vafeiadis. “Automating the Choice of Consistency
Levels in Replicated Systems.” In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14), 281–292. USENIX Association, Philadelphia,
PA. Jun. 2014. https://www.usenix.org/conference/atc14/technical-sessions/
presentation/li_cheng_2.

[45] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça,
and Rodrigo Rodrigues. “Making Geo-Replicated Systems Fast as Possible,
Consistent When Necessary.” In Presented as Part of the 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12), 265–278.
USENIX, Hollywood, CA. 2012. https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/li.

[46] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew
C. Myers. “Warranties for Faster Strong Consistency.” In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’14), 503–
517. USENIX Association, Seattle, WA. Apr. 2014. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/liu_jed.

[47] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun
Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. “Existential Con-
sistency: Measuring and Understanding Consistency at Facebook.” In Pro-
ceedings of the 25th Symposium on Operating Systems Principles, 295–310.
SOSP. ACM, New York, NY, USA. 2015. doi:10.1145/2815400.2815426.

[48] Iulian Moraru, David G. Andersen, and Michael Kaminsky. “There Is More
Consensus in Egalitarian Parliaments.” In ACM Symposium on Operating Sys-
tems Principles (SOSP). SOSP. Association for Computing Machinery (ACM).
2013. doi:10.1145/2517349.2517350.

[49] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Brigg, Luis Ceze,
Simon Kahan, and Mark Oskin. “Latency-Tolerant Software Distributed
Shared Memory.” In 2015 USENIX Annual Technical Conference (USENIX
ATC 15). Jul. 2015. http://sampa.cs.washington.edu/papers/grappa-usenix-

2015.pdf.

[50] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, et al. “Scaling Memcache at
Facebook.” In Presented as Part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13), 385–398. USENIX,
Lombard, IL. 2013. https://www.usenix.org/conference/nsdi13/technical-

sessions/presentation/nishtala.

[51] Patrick E. O’Neil. “The Escrow Transactional Method.” ACM Transactions on
Database Systems 11 (4). Association for Computing Machinery (ACM): 405–
430. Dec. 1986. doi:10.1145/7239.7265.

29

https://dx.doi.org/10.1109/tc.1979.1675439
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
https://dx.doi.org/10.1145/2815400.2815426
https://dx.doi.org/10.1145/2517349.2517350
http://sampa.cs.washington.edu/papers/grappa-usenix-2015.pdf
http://sampa.cs.washington.edu/papers/grappa-usenix-2015.pdf
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://dx.doi.org/10.1145/7239.7265

[52] Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and Henrique Domin-
gos. “Reservations for Conflict Avoidance in a Mobile Database System.” In
Proceedings of the 1st International Conference on Mobile Systems, Applications
and Services - MobiSys 03. MobiSys. Association for Computing Machinery
(ACM). 2003. doi:10.1145/1066116.1189038.

[53] Dan Pritchett. “BASE: An Acid Alternative.” Queue 6 (3). ACM, New York,
NY, USA: 48–55. May 2008. doi:10.1145/1394127.1394128.

[54] Andreas Reuter. Concurrency on High-Traffic Data Elements. ACM, New York,
New York, USA. Mar. 1982.

[55] Salvatore Sanfilippo. “Redis.” http://redis.io/. 2015.

[56] Salvatore Sanfilippo. “Design and Implementation of a Simple Twitter Clone
Using PHP and the Redis Key-Value Store.” http://redis.io/topics/twitter-
clone. 2015.

[57] Peter Schuller. “Manhattan, Our Real-Time, Multi-Tenant Distributed
Database for Twitter Scale.” Twitter Blog. https://blog.twitter.com/2014/

manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-

scale. Apr. 2014.

[58] Peter M. Schwarz, and Alfred Z. Spector. “Synchronizing Shared Abstract
Types.” ACM Trans. Comput. Syst. 2 (3). Association for Computing Machinery
(ACM): 223–250. Aug. 1984. doi:10.1145/989.1188.

[59] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
“Conflict-Free Replicated Data Types.” In Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems, 386–400.
SSS. Grenoble, France. 2011.

[60] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. “Trans-
action Chopping: Algorithms and Performance Studies.” ACM Transactions
on Database Systems 20 (3). Association for Computing Machinery (ACM):
325–363. Sep. 1995. doi:10.1145/211414.211427.

[61] Nir Shavit, and Asaph Zemach. “Combining Funnels: A Dynamic Approach
to Software Combining.” Journal of Parallel and Distributed Computing 60 (11):
1355–1387. 2000.

[62] Liuba Shrira, Hong Tian, and Doug Terry. “Exo-Leasing: Escrow Syn-
chronization for Mobile Clients of Commodity Storage Servers.” In Middle-
ware 2008, 42–61. Middleware. Springer Science $$ Business Media. 2008.
doi:10.1007/978-3-540-89856-6_3.

[63] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. “Declara-
tive Programming over Eventually Consistent Data Stores.” In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation - PLDI 2015. PLDI. Association for Computing Machinery (ACM).
2015. doi:10.1145/2737924.2737981.

[64] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. “Transac-
tional Storage for Geo-Replicated Systems.” In ACM Symposium on Operating
Systems Principles - SOSP’11. SOSP. Association for Computing Machinery
(ACM). 2011. doi:10.1145/2043556.2043592.

30

https://dx.doi.org/10.1145/1066116.1189038
https://dx.doi.org/10.1145/1394127.1394128
http://redis.io/
http://redis.io/topics/twitter-clone
http://redis.io/topics/twitter-clone
https://blog.twitter.com/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.twitter.com/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.twitter.com/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://dx.doi.org/10.1145/989.1188
https://dx.doi.org/10.1145/211414.211427
https://dx.doi.org/10.1007/978-3-540-89856-6_3
https://dx.doi.org/10.1145/2737924.2737981
https://dx.doi.org/10.1145/2043556.2043592

[65] Michael Stonebraker. “Inclusion of New Types in Relational Data Base Sys-
tems.” In Proceedings of the Second International Conference on Data Engineering,
February 5-7, 1986, Los Angeles, California, USA, 262–269. 1986.

[66] Michael Stonebraker, W. Bradley Rubenstein, and Antonin Guttman. “Ap-
plication of Abstract Data Types and Abstract Indices to CAD Data Bases.”
In Engineering Design Applications, 107–113. 1983.

[67] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M. Theimer, and
B.B. Welch. “Session Guarantees for Weakly Consistent Replicated Data.” In
Proceedings of 3rd International Conference on Parallel and Distributed Informa-
tion Systems. PDIS. Institute of Electrical
& Electronics Engineers (IEEE). 1994. doi:10.1109/pdis.1994.331722.

[68] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser. “Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System.” In ACM Symposium on Operating Systems Princi-
ples - SOSP’95. SOSP. Association for Computing Machinery (ACM). 1995.
doi:10.1145/224056.224070.

[69] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakr-
ishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. “Consistency-Based
Service Level Agreements for Cloud Storage.” In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles - SOSP 13. ACM Press.
2013. doi:10.1145/2517349.2522731.

[70] Werner Vogels. “Eventually Consistent.” Communications of the ACM, CACM,
52 (1). Association for Computing Machinery (ACM): 40. Jan. 2009.
doi:10.1145/1435417.1435432.

[71] G.D. Walborn, and P.K. Chrysanthis. “Supporting Semantics-Based Transac-
tion Processing in Mobile Database Applications.” In Proceedings. 14th Sym-
posium on Reliable Distributed Systems. Institute of Electrical
& Electronics Engineers (IEEE). 1995. doi:10.1109/reldis.1995.518721.

[72] W. E. Weihl. “Commutativity-Based Concurrency Control for Abstract Data
Types.” In International Conference on System Sciences, 205–214. Kailua-Kona,
Hawaii, USA. 1988.

[73] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi, and Prince Mahajan. “Salt: Combining ACID and BASE in a
Distributed Database.” In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), 495–509. USENIX Association, Broom-
field, CO. Oct. 2014. https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/xie.

[74] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos,
and Yang Wang. “High-Performance ACID via Modular Concurrency Con-
trol.” In ACM Symposium on Operating Systems Principles (SOSP), 276–291.
SOSP. Farminton, Pennsylvania. 2015. doi:10.1145/2517349.2522729.

[75] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. “Distributing
Hot-Spot Addressing in Large-Scale Multiprocessors.” IEEE Transactions on
Computers 100 (4): 388–395. 1987.

[76] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera,
and Jinyang Li. “Transaction Chains: Achieving Serializability with Low La-
tency in Geo-Distributed Storage Systems.” In ACM Symposium on Operating

31

https://dx.doi.org/10.1109/pdis.1994.331722
https://dx.doi.org/10.1145/224056.224070
https://dx.doi.org/10.1145/2517349.2522731
https://dx.doi.org/10.1145/1435417.1435432
https://dx.doi.org/10.1109/reldis.1995.518721
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
https://dx.doi.org/10.1145/2517349.2522729

Systems Principles (SOSP), 276–291. SOSP. Farminton, Pennsylvania. 2013.
doi:10.1145/2517349.2522729.

32

https://dx.doi.org/10.1145/2517349.2522729

	1. Introduction
	1.1. Mitigating contention
	1.2. Balancing requirements
	1.3. Overview

	2. Trading off consistency for performance
	3. Ordering and visibility constraints
	3.1. Consistency models
	3.2. Transactions
	3.2.1. Transaction chopping and chaining
	3.2.2. Salt: Combining ACID and BASE
	3.2.3. RAMP transactions

	3.3. Models inspired by distributed version control
	3.4. Annotating constraints
	3.5. Review: Constraints

	4. Uncertainty
	4.1. Restricted values
	4.1.1. CRDTs
	4.1.2. Bloom
	4.1.3. Escrow and Reservations

	4.2. Bounded staleness
	4.2.1. Leases
	4.2.2. Probabilistically bounded staleness
	4.2.3. Consistency-based SLAs

	4.3. Review: Uncertainty

	5. Programming model comparison
	6. Mitigating Contention with Abstract Data Types
	6.1. Combining with global data structures in Grappa
	6.2. Claret: abstract data types for high-contention transactions
	6.2.1. Abstract locks
	6.2.2. Claret

	6.3. Reveling in the bounty of inaccuracy

	7. Disciplined Inconsistency
	7.1. Duel of duals
	7.2. Programming model
	7.2.1. Specifying bounds on ADTs
	7.2.2. IPA Types

	7.3. Implementation
	7.3.1. Enforcement system
	7.3.2. Implementation strategy

	7.4. Case studies
	7.4.1. Twitter
	7.4.2. Auction
	7.4.3. Ticket Sales
	7.4.4. Streaming analytics

	8. Conclusion

