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Modern applications are distributed: from the simplest interactiveweb applications to

social networks with massive datacenters around the world. Even simple distributed

applications depend on a complex ecosystem of servers, databases, and caches to oper-

ate. In order to scale services and handle turbulent internet traffic, developers of dis-

tributed applications constantly balance fundamental tradeoffs between parallelism

and locality, replication and synchronization, consistency and availability. This task

is made more difficult by the fact that each component operates independently by

design, knowing little about the original intent of the application or its specific per-

formance needs. Layers of abstraction between the application and its data prevent

the system from adapting itself to better meet the requirements of the application.

Distributed application developers need interfaces that can communicate the

structure and semantics of their programs to distributed systems that know how

to use that information to optimize performance. Programmers should be able to

improve data layout without completely re-architecting the system, and tell the

systemwhich data accesses should be less accurate or the highest priority. The system

should be able to find concurrency and exploit it, leveraging weaker constraints to

improve performance. Programmers should be protected from common mistakes,

such as consistency bugs, by the languages and platforms they use.

This dissertation explores new programming models that use type systems and

abstract data types to communicate application semantics to distributed systems. The

new interfaces place minimal burden on programmers by using the abstract behavior

of existing data structures to naturally express high-level properties. New runtime

techniques and optimizations are proposed to correspond with each additional



piece of information passed down to the underlying system. These techniques

leverage concurrency both in massively data-parallel analytics workloads and in

web-service workloads with abundant inter-request parallelism. First, we propose a

way to automatically move computation closer to data, statically analyzing remote

data accesses and improving locality through compiler-assisted lightweight thread

migrations. Next, we present the design of global shared data structures that enable

threads to cooperate rather than contend for access using distributed combining.

Then we explore ways of exposing concurrency between transactions in distributed

datastores using abstract properties of the datatypes, such as commutativity. Finally,

we introduce a programming model, IPA, that makes it safer to trade off consistency

for performance. Explicit performance and correctness constraints allow the system

to adapt to changing conditions by relaxing the consistency of some operations,

secure in the knowledge that the type system will enforce safety by requiring the

developer to consider the effects of weak operations. Together, these programming

models and techniques in this work contribute to the toolkit available to distributed

application developers to make their lives easier and their software more robust.
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There is an art, or rather, a knack to flying. The knack lies in learning how to throw

yourself at the ground and miss. … Clearly, it is this second part, the missing, which

presents the difficulties.

— Douglas Adams, Life, the Universe and Everything
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1. Introduction

Modern applications have grown beyond what a single machine is capable of han-

dling. It is now hard to even think of compelling new applications that require no

external compute, cloud storage, or communication among users. From social net-

working sites and games (Facebook, Pokemon Go), to online retail services (Amazon,

Etsy) and collaborative working tools (Github, Google Docs) — all of these are split

between client devices and servers, distributed amongmanymachines, spread among

datacenters around the world.

Building software that spans these varied machines is fundamentally more chal-

lenging than traditional standalone applications. Consider the architecture of a mod-

ern web service such as Twitter: the mobile app communicates over the wide-area in-

ternet with frontend servers in one of Twitter’s datacenters. This frontline of servers

merely routes requests to some other set of services which gather data for the user,

such as their timeline of recent tweets, recommendations for users to follow, and ad-

vertisements. Each of these in turn is itself a distributed application, running across

multiple machines, with data stored in each machine’s memory, in other caching ser-

vices, and in slower persistent storage. Designing this kind of software requires de-

cisions about the protocols and APIs each component uses to communicate with the

others, where each piece of functionality should reside, aswell as countless other ques-

tions about storage systems to use and low-level implementation details.

In addition to purely functional design choices, distributed applications introduce

many fundamentally difficult performance decisions, such as:

• Replication and consistency: Data is often replicated for fault tolerance and high

availability, but this creates a tension between availability (e.g. quick responses in

the face of failure) and consistency (correct values that everyone agrees on).

• Sharding and locality: Not all data will fit on a single machine, so it must be

split among many machines. But where should data be placed? What should go

together? How much data must be moved to compute something?

• Parallelism and synchronization: More machines means more compute re-

sources but requires more coordination to ensure correct results. At what point

does the additional synchronization outweigh the benefit of parallelism? Which
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ordering constraints are actually necessary? Where are the true serialization

bottlenecks?

Developing traditional standalone programs, we are used to a suite of tools that sup-

port building correct and efficient software. Most notably, we rely on programming

languages and compilers to understand the programs we write and optimize them for

the machine they run on. Type systems prevent common mistakes like assigning an

incorrect value to a variable or dereferencing a null pointer. Compilers and runtime

systems support programmers by freeing them from burdens such as explicit mem-

ory management. Finally, hardware automatically manages data, caching it close the

cores that are likely to use it again, moving data around transparently to wherever

it is needed.

When it comes to distributed applications, however, developers are on the hook.

Theymust ensure they use APIs correctly, choose the correct level of consistency, and

distribute their data among services explicitly. Most of the knowledge about applica-

tion semantics is lost at the boundary between each service; only information that is

explicitly shared through the provided interface can be leveraged by the system. Take a

typical application using a key-value store for its persistent state. The applicationmay

have a rich hierarchy of classes and data structures that represent its data. But, if the

key-value store’s interface only provides put and get operations on byte strings, then

most of this structure will be lost when the application sends its data to the storage

system. Accordingly, the key-value store has no chance of optimizing for the particu-

lar use case of this application. It can’t predict which data is more likely to be accessed

together, or understand when two updates to the same key could be performed inde-

pendently, or know which operations are the most important to get right.

These systems need a more expressive interface, something that provides addi-

tional information about the structure of the data (e.g. what should be colocated?) and

the behavior of the application. That is where types fit in: types are used all over to

restrict how data is used in order to prevent programming errors:

• Abstract data types express high-level behavior and properties through an inter-

face, hiding the low-level details of the concrete implementation.

• Type systems restrict uses of data in programs; by disallowing potentially unsafe

programs, they can prevent common mistakes.

• Type annotations provide extra orthogonal information about a value or type that

can be composed with the semantics of the base type.

By leveraging types, we can create new interfaces to distributed systems that commu-
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nicate high-level semantics without being a burden on programmers, reusing the data

structures already present in applications and providing type safety that prevents bugs

and aids productivity. Systems can be designed to take advantage of these semantics

from the application to inform how they handle data and inform how they balance

fundamental tradeoffs to improve application performance. Together, this provides

a more robust system design philosophy, allowing applications to express what they

know and the system to optimize and adapt how it executes them.

1.1. Overview

The overarching goal of this dissertation is to help programmers express their dis-

tributed application’s needs to the system, and then design and build systems that can

take advantage of that knowledge to improve performance. This has been borne out

in several distinct projects which leverage different pieces of knowledge to optimize

for different situations.

A portion of the work in this dissertation was done as part of a larger effort to

build a latency-tolerant distributed shared memory runtime called Grappa. The core

of the system is the subject of Jacob Nelson’s dissertation [118] and is described in

detail in [117]. The work described in this document proposes novel solutions to gen-

eral problems, some of which leverage particular strengths of the Grappa platform or

address weaknesses by extending its core functionality, and others that support inter-

active applications backed by distributed datastores.

1.1.1. Automatic locality extraction via migration

A common challenge faced by distributed applications is co-locating computation

with the data that it operates on. In the Grappa runtime system there exist mecha-

nisms to perform arbitrary computation on a remote machine where some piece of

data resides. This chapter introduces a compiler extension that automatically deter-

mines which parts of each thread should execute remotely. New annotations are in-

troduced to C++ to distinguish special “global” pointers, which the compiler uses in

its locality analysis, eventually transforming threads into a sequence of continuations,

implementing a form of compiler-assisted lightweight thread migration. The analysis

and transformation passes are implemented in LLVM [99] and evaluated on several

existing Grappa applications.

3



1.1.2. Reducing contention with cooperation

Due to the extreme degree of parallelism possible in distributed systems such as the

Grappa runtime, globally shared data structures must be designed carefully to han-

dle high contention. Naive implementations of strongly consistent linearizable data

structures require all operations to be serialized, limiting throughput to that of a sin-

gle thread. However, much of this contention can be mitigated if threads cooperate

among themselves locally to combine their operations before applying them in bulk

on the contended data structure. This effectively distributes and parallelizes the syn-

chronization process, leveraging the associativity of many operations. The proposed

techniques for distributed data structure design are described for an environment like

Grappa but could be applied to other distributed environments.

1.1.3. Exposing concurrency in transactions with ADTs

Just as combining above leveraged associativity to reduce contention, abstract prop-

erties of data types can also be used in the context of distributed transactions to re-

duce conflicts. This work uses the notion of abstract data types (ADTs) to communi-

cate semantics between users, who model their application state using common data

structures, and the transactional datastore which they use to store them. By exposing

abstract properties to the transaction processor, this system is able to reduce conflicts

and synchronization bottlenecks, improving the performance achievable with strong

consistency. Adding distributed transaction support to a Redis-like [136] prototype

datastore, this work shows that strong consistency can perform nearly as well as a

non-transactional version.

1.1.4. Safely trading consistency for performance

Distributed applications andweb services, such as online stores or social networks, are

expected to be scalable, available, responsive, and fault-tolerant. To meet these steep

requirements in the face of high round-trip latencies, network partitions, server fail-

ures, and load spikes, applications use eventually consistent datastores that allow them

to weaken the consistency of some data. However, making this transition is highly

error-prone because relaxed consistency models are notoriously difficult to under-

stand and test.

This chapter proposes a new programmingmodel for distributed data that makes

consistency properties explicit and uses a type system to enforce consistency safety.
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With the Inconsistent, Performance-bound, Approximate (IPA) storage system, program-

mers specify performance targets and correctness requirements as constraints on per-

sistent data structures and handle uncertainty about the result of datastore reads using

new consistency types. Built in Scala on top of the open-sourceCassandra datastore [11],

IPA is shown to prevent consistency-based programming errors and improve perfor-

mance by adapting to changing network conditions.

1.2. Tasting notes

The projects above contribute to an ever-growing, though still impoverished, toolkit

available to developers of distributed applications. This document is organized ac-

cording to these discrete projects, but several common threads (pardon the parallelism

pun) tie this work together. These same few fundamental challenges permeate much

of distributed systems, yet luckily this is not strictly a zero-sum game — by using

additional knowledge the programmer already has, many of these challenges can be

mitigated. The trick lies in exposing situations where prior solutions had to be overly

conservative due to lack of insight. We will see many instances of these themes crop

up throughout later chapters, but here we give you a hint of what to watch for.

1.2.1. Skew and contention

Natural phenomena have a tendency to follow power law distributions: from Zipf’s

Law which observed that the frequency of words in natural language follows a power

law, to the power-law degree distributions that cause low diameter networks (collo-

quially “six degrees of separation”) and cause Instagram to make special cases for ev-

ery time Justin Bieber posts a selfie [109]. Network effects can amplify small signals

into deluges of activity, causing memes to propagate virally through social networks,

blogs, and news sites, inundating services under heavy load without warning, such as

in February 2015when a picture of a black and blue dress exploded across the internet

bringing unprecedented traffic to social and news sites like BuzzFeed [119]. Systems

with real-time components encounter spikes of activity as events occur in real life —

in its early days, goals duringWorld Cup games famously caused Twitter to crash and

show the “fail whale” [82], and even in its 8th year of dealingwith unpredictable traffic,

Twitter briefly fell victim in 2014 after Ellen Degeneres posted a selfie at the Oscars

which was retweeted at a record rate [15].
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Skewed distributions in space and time must be taken into account when

designing systems. Solutions that work for the average case (e.g. an average Twitter

user) may not work for extremely popular users or viral memes. Increasingly

interactive distributed applications result in a high degree of writes to data, which

leads to contention on heavily accessed objects. Contention was a key factor in the

design of each of the components of this dissertation. The Grappa runtime system,

designed for such irregular workloads, required data structures which can handle

high contention, which are explored in Chapter 3. Chapter 4 introduces a way to use

information already in applications to reduce the impact of these high-contention

workloads by exposing the high-level semantics of write operations to the underlying

store. The IPA programmingmodel in Chapter 5 helps applications adapt to changing

conditions, ensuring the code handles both common and extreme cases.

1.2.2. Parallelism, locality, and synchronization

Data layout has always been important for application performance. However, dis-

tributed applications must be particularly concerned about where their data resides

because retrieving data from remote machines can be orders of magnitude more ex-

pensive thanmainmemory. This cost comes partly from simple latency resulting from

physical distance, but software overhead within the complex network stack and oper-

ating system interactionsmake for significant cost even among neighboringmachines.

Locality also plays a role in synchronization. In general, guaranteeing linearizabil-

ity — where all observers agree on a single total order of operations on an object or

record — requires sequencing concurrent operations. This is typically done by desig-

nating one owner (such as a single thread) which orders all operations that it receives.

Note that this is analogous to how coherence protocols work in multi-processors. As

an aside, multiple machines can coordinate to agree on a common ordering using ex-

pensive consensus protocols (e.g. Paxos [98]), but this is done for fault tolerance, not

performance, and typically comes down to choosing a leader which can trivially order

operations.

Because of this reliance on a single owner to order operations, applications must

choose carefully where to place data and computation. Heavily modified data cannot

easily be cached, but with the high cost of communication, it is important to ensure

that computation happens as close as possible to the data it uses. Chapter 2 proposes a

compiler (Alembic) that can leverage its knowledge of data accesses to move computa-

tion (essentially migrating threads) closer to data, even if it is spread among multiple
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machines. Both Chapter 3 and Chapter 4 use the idea of combining to get around the

single-owner problem by pre-synchronizing operations in parallel before sequenc-

ing them.

1.2.3. Consistency and ordering

Consistency models1 allow programmers to reason about the behavior of reads and

writes to replicated data, particularly properties specifying the observable order of up-

dates. The weakest, eventual consistency [159], merely guarantees that at some point

in the future, all replicas will agree, but says nothing about when or which updates

may be reflected. On the other hand, read your writes [152] guarantees, as the name

implies, that reads will reflect at least the last write made by the same client.

Stronger consistency necessitates more synchronization and comes in direct op-

position to availability — this is known as the CAP Theorem [34, 67]. In the context

of replicated datastores, this could mean waiting for several machines, potentially dis-

tributed over a wide geographic area, to coordinate and agree on the current state.

This means that if a network partition or failure causes some messages to be delayed

or lost, clients can see widely varying response times compared with weaker consis-

tency that allows them to use whichever replica is closest or least-loaded.

The problem with consistency models is that they imply an ordering between op-

erations that almost certainly does not reflect what a particular application needs. Se-

quential consistency [97] or linearizability [76], which force all operations to be totally

ordered, impose extreme restrictions on reorderings and preclude high availability.

There are many systems that allow applications to control consistency at a finer grain

and even specify application-level properties. Several of these are discussed in detail

in §5.2, in the context of disciplined inconsistency.

Another source of excessive ordering constraints can come about when there is

insufficient information available to the system. Within an application, it may be ob-

vious that the relative order of two actions is irrelevant, such as two people “liking” a

post on Facebook. Yet if these actions are represented in the datastore as simple low-

level put and get operations, then they will appear to conflict with one another and

can lead to conflicts or consistency violations. Chapter 4 explores this issue in detail

1The term consistency means something different to everyone, from the “C” in “ACID”, to the “C” in
“CAP”, not to mention to computer architects who believe in “sequential consistency”. In this work,
we use it to discuss the behavior of replicated data, especially in the context of consistency models
such as eventual consistency.
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and proposes extensions to existing data storage systems that allow them to take ad-

vantage of the abstract semantics of operations.

1.2.4. Abstract data types

The systems stack involves many layers of abstractions, without which it would be

nearly impossible to implement wide-area communication, durable storage despite

hardware failures, or transparent scale-out based on demand. However, the inherent

challenge with abstractions like this is the loss of information between layers. The

simplest example is an application that stores its data in a key-value store using put

and get operations. This interface is fully general, making it easy to swap in new stor-

age systems, but this impoverished channel means that most of what the application

knows about the structure of its data is lost in translation.

A core tenet of computer science, abstract data types (ADTs) hide the details of their

concrete implementation, yet allow reasoning about abstract state and logical behav-

ior, including algebraic properties such as commutativity and associativity. Develop-

ers are familiar with ADTs, constantly reasoning about the data structures needed to

model application state and implement algorithms. Without burdening the developer,

relevant properties about the semantics of operations can be passed on to other parts

of the distributed system stack, allowing them to leverage that knowledge to improve

performance.

For example, datastores with a richer interface, such as Redis, Riak, and Hyper-

dex [22, 58, 136], which support a wide variety of operations on common data struc-

tures such as lists and sets, providemuchmore information to the system. The concept

of ADTs has long been used to extend databases: supporting indices and query plan-

ning for custom data types [149, 150], and concurrency control via abstract locks [14,

47, 75, 163]. Modern schema-less (“NoSQL”) datastores deal with new challenges at

scale and have evolved many database techniques to solve them, but they largely do

notmake use of the properties of their data to provide strong guarantees. Chapter 4 in-

troduces the Claret prototype datastore that demonstrates the promise of using ADT

semantics to reduce conflicts between distributed transactions by recognizing which

operations can safely execute concurrently.

In addition to reasoning about concurrency, semantics can also help reason about

changes to state and the effects optimizations will have on observed values. Know-

ing, for example, the effect an increment operation has on a Counter can allow a

storage system to make smarter decisions, such as allowing some increments to race
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with reads because the result will still be close enough. This is explored in more de-

tail in Chapter 5.

1.3. Previously published material

This dissertation comprises work published elsewhere in conference papers:

• Chapter 2: Alembic: Automatic Locality Extraction via Migration. Brandon Holt, Pre-

ston Briggs, Luis Ceze, and Mark Oskin. In Object-Oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA), 2014. [79]

• Chapter 3: Flat Combining Synchronized Global Data Structures. BrandonHolt, Jacob

Nelson, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, and Mark Os-

kin. International Conference on PGAS ProgrammingModels (PGAS), 2013. [78]

• Chapter 4 (in a much earlier form): Claret: Using Data Types for Highly Concurrent

Distributed Transactions. Brandon Holt, Irene Zhang, Dan Ports, Mark Oskin, Luis

Ceze. Workshop on Principles and Practice of Consistency for Distributed Data

(PaPoC), 2015. [80]

• Chapter 5: Disciplined Inconsistency with Consistency Types. Brandon Holt, James

Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze. To appear in the

Symposium on Cloud Computing (SoCC), Oct 2016. [81]
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2. Alembic
Automatic locality extraction via migration

2.1. Introduction

When targeting distributed systems, such as commodity clusters, application develop-

ers must deal with both parallelism and locality. Often these are at odds as placing

more data on a single machine node improves locality but may decrease the ability to

exploit parallelism across the entire system. This lack of separability forces program-

mers to reason about these two conflicting drivers of performance in tandem.

Partitioned Global Address Space (PGAS) [40, 42, 43] languages simplify the

expression of parallel computations on large distributed systems. The programmer

writes to a shared memory model, using global pointers which can reference memory

anywhere in the system, and the runtime automatically handles the movement of

data. While elegant, PGAS systems do not remove the fundamental conflict between

parallelism and locality; in fact, they can easily lead to less efficient applications [49].

Compared with expressing all data movement manually, PGAS models may hide

cases where the way the algorithm is expressed leads to excessive communication.

Thus even in a PGAS system, programmers wishing to exploit the last ounce of

performance must manage locality themselves. The typical way to do this is to care-

fully layout data structures such that blocks of data accessed together are placed to-

gether and then when spawning new threads, explicitly place themwhere most of the

data the thread will access is located. This is not an ideal solution for two reasons: (1)

it can make otherwise-elegant PGAS implementations excessively complex with ex-

plicit computation movement – in effect, instead of explicitly moving data around with

MPI invocations, the programmer is explicitly moving computation around using a

variety of techniques (spawning new threads, continuations, etc); and (2) not all appli-

cations are amenable to easy partitions of computation and data – notably, irregular

graph algorithms lack spatial locality, so placing the computation at any fixed location

in the system guarantees several remote accesses and poor performance.

This chapter introduces Alembic, a compilation technique for PGAS systems that
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automatically extracts locality from programmer-created threads. Alembic statically

analyzes code looking for sequences of memory references that go to the same ma-

chine. It then transforms a single programmer-written thread into a series of contin-

uation threads, each spawned on the machine that hosts the majority of the data that

continuation will access. Synchronization is added to ensure the sequential semantics

the programmer has expressed are maintained, and necessary context state is pack-

aged into messages that pass control between machines.

Alembic provides a substantial performance boost for PGAS code. In our evalu-

ation, simple, elegant PGAS implementations of common graph algorithms such as

breadth first search achieved only 13% of the performance of hand-optimized imple-

mentations where the programmer explicitly writes remote procedure calls. Alembic

can transform these cleanly written algorithms into high performance locality-aware

codes, achieving 82% of the performance of the hand-tuned implementation on av-

erage.

In summary, the novel contributions of this work are:

• An analysis to prove co-location of global memory accesses.

• An optimization system that identifies good candidates for code movement.

• An implementation based on LLVM of these techniques.

• An evaluation of the implementation in a PGAS environment on commodity clus-

ter hardware.

Before delving into the details of the Alembic analysis, we first provide some con-

text on PGAS programming models and the Grappa runtime on which this work is

evaluated.

2.2. Background on distributed programming models

In general, the problem which Alembic addresses is an instance of program partition-

ing: the process of determining how to divide a program and its data over a number of

machines in order to minimize the amount of communication required to move data

and perform synchronization. The most primitive solution is embodied by the single-

process-multiple-data (SPMD)2 model used by many high-performance computing

models, most notably theMessage Passing Interface (MPI) standard. In this model, all

2SPMD is derived fromFlynn’s Taxonomy [63], an extension of the single-instruction-multiple-data
(SIMD) concept but for multiprocessors, particularly distributed.
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communication is explicit and data is typically partitioned statically among processes

all executing the same code. Over many years, a number of solutions have been pro-

posed to simplify the process of building applications that span multiple machines by

making them appear more like traditional shared memory programs.

2.2.1. Distributed Shared Memory

An early attempt at providing the illusion of shared memory, termed distributed shared

memory (DSM), piggybacked on the virtual memory system of most processors. These

systems [26, 41, 102] moved entire pages of data dynamically as requested by appli-

cations, so they required very regular access patterns and careful thought when de-

termining which parts of the computation to execute where. Many DSM applications

were attempted to be ported naively from their original shared memory implementa-

tions that were not designed to carefully avoid remote memory access.

2.2.2. PGAS Systems

Recognizing the huge performance cost of dynamically migrating pages that plagued

DSM systems, Partitioned Global Address Space (PGAS) systems instead make the as-

sumption that every piece of global memory is owned by a particular entity which

mediates all accesses to that piece of memory. This entity often corresponds to a phys-

ical locality domain, such as a node in a cluster. From this domain, any memory it

owns can be accessed directly using simple loads and stores. Memory accesses to a

different node are mediated by the host node where that memory is located. As in

DSM systems, the distinction between local and remote memory is hidden from the

programmer, typically via a global pointer abstraction. However, these languages — in

particular, Unified Parallel C (UPC) [40], Chapel [42], and X10 [43] — provide more

support to programmers to control data layout and placement of computation tasks.

Having a single node own each piece of memory makes it much simpler to main-

tain a single consistent view of shared data for programs. The PGAS runtime system

ensures that program-level memory ordering is preserved through the various com-

munication mechanisms. The PGAS model has been applied to a variety of system

architectures, not just distributed-memory clusters, and as such often use different

terminology. In this work, we adopt Chapel’s locale [42] to refer to a particular set of

computational and memory resources.
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2.2.3. Grappa

Grappa is a PGAS-style programming model and runtime system designed for irreg-

ular applications. The primary factors that make an application irregular are unpre-

dictable data-dependent access patterns and poor spatial and temporal locality. Exam-

ples of such applications include graph analytics on social networks, fraud detection,

or meta-genomic analysis. To tackle these kinds of applications, the Grappa runtime,

implemented as a C++11 library, uses massive parallelism to tolerate the latency of

automatically aggregating communication. In Grappa, the programmer is expected to

provide the runtime with many (potentially millions) of fine-grained tasks. The run-

time then schedules these tasks on the available computational resources, overlapping

the remote memory accesses from one thread with the productive execution of other

threads. In Grappa, the unit of work being carried out is referred to as a task. The par-

ticular execution container (stack, context state, etc) that carries out the execution of

a task is a worker thread, or just worker. We will use the term thread to refer to the more

abstract notion of a sequential thread of execution.

In Grappa, a task is mostly executed by a single worker, but the runtime has also

embraced a delegation-based execution model, similar in many ways to the CmPS

model (described below), where arbitrary computations on remote data are shipped

to where the data is in order to be executed. Delegate operations block the caller un-

til they return their result in order to preserve a sequential thread of execution. In

the existing system, delegate operations are specified explicitly and are the only way

to access data on other locales. Composing delegate operations and choosing which

code should be executed where becomes the dominating concern when writing and

optimizing Grappa code, which this work attempts to automate.

2.2.4. Communication-Passing Style

As the name is intended to evoke, Communication-Passing Style (CmPS) [89] is an ana-

log to continuation-passing style for distributed systems. The core idea is that rather

than fetching data remotely, communication is done by sending a continuation, which

contains everything necessary to resume execution, to the locale where the data re-

sides. Transforming execution in this way preserves the same sequential execution

expressed in the source program, but now, if there is more than one access to data on

the same locale, no additional communication is necessary.

In this execution model, communication is still implicit; however, forcing migra-
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tion on every access has downsides if a large amount of state must be carried over

to continue execution. Therefore, the CmPS work formalized a notion they call com-

putation migration, where most of the state is frozen and left behind, and the reduced

continuation is sent, does its computation, and immediately returns to rejoin the rest

of the state it left behind. CmPS programs explicitly mark when a frozen migration

should be done.

CmPS uses a notion of address spaces associated with objects to reason about when

migration is necessary, which includes ways to recognize when accesses to different

objects refer to the same address space. We refer to this as locality partitioning.

The CmPS work established formal operational semantics for a functional lan-

guage with distributed memory, forming the basis by which we reason that our own

continuation-passing transformations are sound. Our Alembic transformation essen-

tially applies the CmPS technique to an imperative, object-oriented context – our

variant of C++ with PGAS extensions. Additionally, we design analyses to statically

choose when to migrate to minimize communication.

2.3. Language extensions for locality

We start by introducing some concrete syntax and semantics to define the context for

the rest of the techniques in this work and establish some common terminology. The

aimof our particular implementation of the PGASmodel is to staywithin the confines

of plain C++ as much as possible, both for ease of adoption as well as ease of imple-

mentation, so our extensions are confined to attributes that express where operations

can execute. The syntax and semantics should not be particularly surprising to anyone

familiar with PGAS languages, and the techniques we apply should be generalizable

to other PGAS environments.

In order to interoperate with the existingGrappa runtime, which is a plain C++11

library, each of the constructs belowmaps to a C++ class and can be coerced between

its “library” and “language” forms. This means that any part of the application can be

written without relying on special compiler support, and just the region where the

new syntax is used will be manipulated by the passes described in this chapter.

2.3.1. Global Pointers

A fundamental primitive of PGAS languages is the global pointer, which encodes the

locale where it is valid in addition to the address in the locale’s memory. Like normal
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pointers, global pointers may refer to data on task stacks, static memory, or the heap.

In Alembic, global pointers are expressed using a new global modifier on pointer

types, e.g.: int global* x.3We encode the global attribute as a custom address space,

part of the Embedded C extensions [87], which gets propagated into the compiler’s

intermediate code. We refer to pointers without any modifier as local pointers, signi-

fying that they do not encode a particular locale, but are only guaranteed to be valid

where they were generated.

Because global pointers are only valid on one particular locale, a dereference of

one implies the chance of communication, since the actual load or store must be exe-

cuted on the locale indicated by the global pointer. The PGAS language is responsible

for ensuring this, typically by turning each global load or store into a put or get op-

eration supplied by the runtime.

Global pointers are deeply global: pointers computed as offsets from a global

pointer, via member accesses or array indexing, are also global. The locale of the

resulting pointer, however, is not necessarily the same as the original pointer; it

depends on the operation and the type of the object pointed to. These rules will

be discussed in more detail in §2.4.1.

Method calls through global pointers are allowed. Because the receiver is now

global, any references to the objects’ fieldsmust also be associatedwith the same locale.

And local pointers used or returned by the method are only valid where that object

resides, so they must also be made global. The details of this transformation will be

covered in §2.4.4.

Global pointers can be explicitly constructed from a local pointer and a locale,

or may come from allocating out of some global heap which is distributed in some

fashion over the locales in the system. In both cases, the pointer must carry the in-

formation about how the object it refers to is distributed so that operations on the

pointer, such as indexing off of it, can be resolved correctly. PGAS languages often

provide a variety of choices for how to distribute arrays, such as Chapel’s domain

distributions. In Grappa, we have a simple block-cyclic heap with a fixed block size.

Objects allocated from the heap must be aligned to the block size so they are not split

between multiple locales. Elements of arrays allocated from the heap are distributed

round-robin among locales.

3The syntax of pointer modifiers in C/C++ is undeniably confusing. Just as int const* indicates
that the pointer cannot modify the int it points to, so does int global* indicate that the object it
points to may be remote. As with const, global int* is equivalent, but we prefer the first version.
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2.3.2. Symmetric Pointers

Globally distributed data structures are an important part of PGAS environments. For

instance, it can be useful to have a hash table that tasks on all locales can operate on

and see a consistent view. These distributed objects can be implemented in various

ways. In Grappa, we implement them using a handle, or proxy, to the global object on

every locale. Methods called on these proxies from any locale observe the state of one

globally distributed object. Internally, the implementation of these methods coordi-

nates among all the other proxy objects and any additional global state to provide this

illusion, allowing optimizations, such as buffered updates, to be hidden from the user

behind this level of abstraction. These uses are discussed in more detail in Chapter 3.

In order for our language to handle these objects correctly, we introduce a notion

of symmetric objects, referred to by symmetric pointers, which have a copy on every

locale. Distinct from global pointers, which are valid on one locale only, a symmetric

pointer has a valid address on all locales. In order to refer to one of these globally-

distributed objects, all one needs is a symmetric pointer to its proxies. Methods called

through these symmetric pointers go towhichever copy is on the current locale, which

then takes care of maintaining the illusion of one distributed object. One additional

constraint is that methods called using symmetric pointers must be executed entirely

on one copy of the object – if the method is inlined, for example, we must ensure all

the references to the symmetric pointer resolve to the same locale. This ensures that

any state maintained internally in each proxy is kept in a consistent state.

Symmetric pointers can be obtained by using a special allocation from the global

heap that ensures that all the copies are at the same offset. By obtaining an allocation

in this way, the programmer is asserting that their object has symmetric semantics.

Variables in the C++ global scope, because of the SPMD nature of the runtime, have

the same static offset on every locale, so theymay also be treated as distributed objects

if they are explicitly annotated as symmetric.

2.3.3. “Anywhere” function annotation

As with unannotated pointers, by default, functions must be assumed to be local, so

cannot be moved in a migration. The anywhere annotation applied to a function im-

plies that it can safely be run from any locale. This is useful for functions that will

take care of inter-locale communication themselves, similar to how symmetric ob-

jects work. Furthermore, this annotation is applied to functions whose semantics al-

16



low flexibility in where they execute, such as print statements and assertions, or run-

time calls such as spawn. In many cases, the compiler could determine by inspecting

the function that the objects it references are symmetric and allow it to be treated as

such; however, this annotation can be used to assert this up front, regardless of what

the compiler is able to glean.

2.3.4. Tasking and synchronization

In this work, we use the tasking and synchronization provided by Grappa unchanged.

We introduce some constructs here so that code examples throughoutwill make sense.

As in many parallel frameworks, we express parallelism in the form of tasks. A task

represents a small amount of sequential work to be run asynchronously some time

after it is spawned. These short-lived, lightweight parallel threads of execution go by

many names, such as fibers, green threads, or simply asyncs.

Tasks are expressed by passing aC++11 lambda to spawn; their initial state ismade

up of captured variables. In general, tasksmay run asynchronously any time after they

are spawned and must be explicitly synchronized to ensure they finish. This can be

done via ad-hoc synchronization or more structured constructs. For instance, tasks

spawned by parallel loops, described below, are typically synchronized using a phaser,

which we describe next for reference.

2.3.4.1. Phased synchronization

A phaser [144] is a flexible, reusable global barrier where the number of registered

events may be unknown at the start. This is particularly useful for phased rounds of

computation where a large amount of parallel work will be recursively spawned, for

instance while traversing a graph. Tasks may enroll with the phaser before starting

and call complete when finished, while other tasks can block until the phase is done

by calling wait on it. Phasers are implemented as symmetric objects in our system, so

the same phaser is accessible from all locales.

2.3.4.2. Parallel loops

Parallel loops (we borrow the name forall used in UPC and Chapel [40, 42]) con-

ceptually spawn a separate asynchronous task per iteration. Our parallel loops use a

phaser to synchronize all spawned tasks and any additional asynchronous operations

that should be completed before the loop is terminated. The non-blocking version,
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struct Counter { long count, winner; };

symmetric Phaser phaser;

void hops(Counter global* A,

          long global* B, size_t N) {

  forall<&phaser>(0, N, [=](long i) {

    Counter global* a = A + B[i];

    long prev = fetch_and_add(&a->count, 1);

    if (prev == 0) a->winner = i;

  });

}

void hops(GlobalAddress<Counter> A,

          GlobalAddress<long> B, size_t N) {

  forall<&phaser>(0, N, [=](long i){

    Locale origin = here();

    phaser.enroll(1);

    delegate<async>(B+i,[=](long& b){

      delegate<async>(A+b,[=](Counter& a){

        long prev = fetch_and_add(&a.count, 1);

        if (prev == 0) a.winner = i;

        phaser.complete(origin, 1);

      });

    });

  });

}

Listing 2.1. Managing nested delegates and synchronizing them is significantly more tedious and error-

prone. This listing shows code for the HOPS benchmark, a variant on GUPS that tracks which

index from B incremented an element of A first. The top version uses the extended syntax

and relies on compiler-generated communication; the bottom does explicit movement and

synchronization. The first highlighted region (green, dashed border), indicates the first migra-

tion, to B[i], the immediately-following region (purple, dotted border) indicates the second

hop.

forall<async>, can be nested inside other loops and typically uses the phaser of the

outermost loop to ensure all iterations complete.

2.3.5. Example: HOPS

Tomotivate thiswork,we use a simple benchmark based on theHPCC random-access

benchmarkGUPS [83]. In GUPS, an array of random numbers, B, is used to index into

another array, A, and atomically modify the element there. There are more elements

in B than A, so most elements will be visited multiple times. The modified benchmark,
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which we call HOPS, additionally tracks which element from B first reaches a given

element in A. This operation is meant to be representative of work done when vis-

iting objects in irregular applications, and should look familiar to those who know

the parent-claiming step of the Graph500 BFS benchmark [69]. In addition, we dis-

regard the distribution of the B array when initially placing tasks in order to better

demonstrate an opportunity to hop directly from one locale to another when migrat-

ing. Two implementations of HOPS are shown in Listing 2.1, one using the extended

C++ syntax, the other explicit communication, with the two migrated regions high-

lighted in each.

2.4. Locality analysis and continuation transformation

Since memory regions are owned by locales, we can think of accesses to that mem-

ory as points in the execution that are anchored to a particular locale (i.e., a load from

a global pointer must occur on the locale it points to). These anchor points are con-

straints on the execution of the task, with the start of the task anchored wherever the

runtime invokes it. Rather than thinking of remote accesses as necessary communi-

cation points, we can instead think of them merely as constraining execution of that

part of the task to a particular locale. Many instructions are not anchored, meaning

that we could choose to execute them at either location.

Tasks can be thought of as being divided into regions based on locality. At each

transition between regions, a continuation is constructed and sent to where the next

region is to be executed. Thesemigrationsmay either be blocking, inwhich case control

returns to the home locale immediately after, or chained, hopping from one locale di-

rectly to the next. Though executed on different locales, these regions still represent

a single sequential task.

Considering task execution in this way enables many useful optimizations. Re-

gions that include more than one anchor point can save on round-trips. Values pro-

duced and consumed on the same locale need not be communicated. Finally, when a

continuation constitutes the remainder of the task, the migration can be asynchronous,

immediately freeing up the worker executing it. We do not consider opportunities

to further parallelize tasks, counting on the programmer to express the concurrency

they desire with explicit task spawns.

The goal of our analysis is to choose how to divide tasks into locality regions and

transform them into a series of continuation-passing migrations that minimize com-
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Expression Locality Operation

Local pointer:

p here() identity

p[4] locale(p) array index

p->f locale(p) field offset

p->adj() locale(p) local pointer

p->adj()+9 locale(p) local pointer index

new T[4] here() allocation

Global pointer:

g locale(g) identity

g[4] unknown array index

g->f locale(g) field offset

g->adj() locale(g) local pointer

g->adj()+9 locale(g) local pointer index

make_global(p,3) 3 constructor

global_alloc<T>(4) unknown allocation

Table 2.1. Locality of various pointer operations. In these examples, assume T is aligned to the

block size, and the method adj() returns a local pointer.

munication cost.Our analysis operates at the level of standard compiler optimizations,

specifically, on LLVM’s intermediate representation (IR) [99]. First, locality partitioning

divides anchor points into sets proven to be on the same locale. Next, region selection

enumerates and evaluates possible regions. Finally, a transform pass extracts the re-

gions, computes continuations, and inserts runtime calls to do the migration. The fol-

lowing sections describe the steps in more detail.

2.4.1. Locality Partitioning Algorithm

Anchors are instructions that access memory, which restricts them to execute where

that memory is. For most anchor points, the region of memory is demarcated by a

pointer and size. While the precise locale of the pointer will almost never be known
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statically, it is often possible to prove that two anchor points’ locales are the same. The

goal of locality partitioning is to find as many of these co-located anchors as possible.

We take an approach similar to value partitioning [7, 36] to divide anchor points

into different locality sets. Value partitioning is a variant of value numberingwhich tries

to divide value-producing instructions into congruence classes (or sets) for the purpose

of eliminating redundant computations. Congruence is a recursive property, so in or-

der for two values to be congruent, their respective operandsmust be in the same con-

gruence sets. Value partitioning can be approached either from an optimistic perspec-

tive, where values are considered congruent until proven incongruent, or pessimistic,

where values begin in their own sets and are merged when proven congruent. Both

approaches are conservative.

Locality partitioning differs primarily in the definition of congruence. Rather than

finding when operations compute the same value, we are concerned with finding

whenpointer values are guaranteed to be on the same locale. Table 2.1 shows a number

of operations on pointers and the information available about their relative locality.

For example, field offsets in block-size aligned objects are guaranteed to be on the

same locale as the global pointer.

The locality rules supported by our C++ PGAS language use only local reasoning.

One could imagine extending this in languages with more rich global locality infor-

mation to prove co-locality in more situations. For example in Chapel [42], domain

distribution information could be used to prove that elements with the same index in

arrays with the same distribution have the same locale. To support such features, ad-

ditional locality rules would simply need to be added.

The list of locality rules need not be exhaustive – any operation not covered will

be conservatively placed in a new locality set. Some instructions may have no infor-

mation available about the region of memory they access, such as an opaque function

call. These must remain on the home locale to ensure that they are executed in the

context they expect; the programming model ensures that they handle any necessary

communication themselves.

The current implementation takes a pessimistic partitioning approach, initially

placing all anchor points in distinct locality sets and merging sets when it proves they

are on the same locale. This limits our analysis in the same way as for value partition-

ing:wemust rely on visiting anchor points in a topological order, and therefore cannot

use loop-carried information to prove co-locality. A future implementation could use

the optimistic value partitioning approach if this was shown to be too limiting.
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entry:

  %t.i = getelementptr inbounds %Task* %t, i64 0, i32 0

  %i = load i64* %t.i ;{%t.i, %t.B, %t.A, %t.o}

  %t.B = getelementptr inbounds %Task* %t, i64 0, i32 2

  %B = load i64 global** %t.B ;{%t.i, %t.B, %t.A, %t.o}

  %B.i = getelementptr inbounds i64 global* %B, i64 %i

  %b = load i64 global* %B.i ;{%B.i}

  %t.A = getelementptr inbounds %Task* %t, i64 0, i32 1

  %A = load %Counter global** %t.A ;{%t.i, %t.B, %t.A, %t.o}

  %count = getelementptr inbounds %Counter global* %A, i64 %b, i32 0

  %prev = atomicrmw add i64 global* %count, i64 1, seq_cst ;{%count,%winner}

  %cmp = icmp eq i64 %prev, 0

  br i1 %cmp, label %if.then, label %exit

if.then:

  %winner = getelementptr inbounds %Counter global* %A, i64 %b, i32 1

  store i64 %i, i64 global* %winner ;{%count,%winner}

  br label %exit

exit:

  %t.o = getelementptr inbounds %Task* %t, i64 0, i32 3

  %origin = load i16* %t.o, align 2 ;{%t.i, %t.B, %t.A, %t.o}

  tail call void @complete(%Phaser* @phaser, i16 %origin, i64 1) ;{@phaser}

  ret void

(a) HOPS Iteration task in LLVM IR.

Locality Sets

{%t.i, %t.B, %t.A, %t.o}

{%B.i}

{%count, %winner}

{@phaser}

%count

%t

%t.i %t.B %t.A %t.o

%i = load

%B.i

%B = load

%b = load

%A = load

%winner

%origin = load

@complete()

%prev = load

%cmp

store %winner @phaser

(b) Dependence graph for HOPS iteration.

Figure 2.1. Breakdown of the task executing a single iteration of the HOPS loop. In (a) we

show the task’s instructions, annotated with their locality set (in braces), and divided into re-

gions. At the first horizontal line, the task migrates to {B.i} (in green). At the second line,

execution migrates again for the atomic increment until the end of the task (purple). Bold,

non-highlighted instructions are those that must be hoisted into the first (home) region. The

corresponding value dependence graph is shown in (b) with nodes for instructions labeled

with the value they produce. Here boxes are drawn around regions – arrows that cross these

boundaries indicate values that will go into continuations.

2.4.2. Region Selection

Once the anchor points have been classified, the next task is to choose where to exe-

cute the remaining unconstrained instructions. The goal is to comeupwith a sequence

of migrations, constrained by anchor points, that will result in the minimum amount

of communication. Recall from §2.2.4 that the continuation must include everything

needed to resume execution; the communication cost is the size of this continuation.
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In some situations it is preferable to leave some state on the original task’s stack, mi-

grate a smaller continuation, and return to pick up the rest (in CmPS this was a freeze

operation).

This analysis divides the instructions in each task into regions by locality. All the

anchors in a region are proven to be to the same locale. Non-anchor instructions, in-

cluding symmetric pointer accesses and anywhere function calls, are placed in one

region or another to minimize communication. Though it would likely lead to some

improvement in communication, to simplify the problem, this pass does not consider

duplicating instructions in more than one region, nor splitting the thread to expose

additional parallelism. This means that regions do not overlap; the task is still a single

thread of execution whose control and data jumps around the system. A more ambi-

tious transformation which does allow for these is left for future work.

Before diving into the details of the algorithm, let us revisit theHOPS code in List-

ing 2.1, which will be used throughout this text to explain the mechanics of Alembic.

A parallel loop from 0–N creates tasks for each iteration. Each task gets the random

value stored at B[i], a global access, and uses that to index into A, likely referring to

another locale, on which it performs an atomic increment. The LLVM IR correspond-

ing to this task, on which our analyses operate, is shown in Figure 2.1(a). Anchors are

annotated with their locality sets and two distinct migrated regions are shown high-

lighted. The un-highlighted instructions in these regions must be hoisted to make the

regions contiguous.

Anchor points are annotated with their locality set in blue. The locality regions

we would like to infer are highlighted: the first migrated region, after the horizontal

rule, to be executed at B[i], and purple for the region at the element in A. However,

instructions highlighted in red, which are anchored where the task started, currently

prevent these regions from being contiguous.

Choosing the optimal migration policy is intractable: it would at the very least re-

quire full-program analysis, but would also depend on the layout of data, runtime load

balancing, physical interconnect topology, and many other concerns. The hypothesis

of this work is that automated decisions at the scope of a task, with the constraints

provided by anchor points, are sufficient to compete with communication explicitly

provided by the programmer. Even with the above restriction that instructions only

appear once, instructions can still be reordered and because we do not know the opti-

mum number of migrations, the problem reduces to finding a minimum k-cut (where

k is the number of migrations) on the task’s dependence graph, which is known to be

NP-complete [65].
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Instead, we implement a much simpler greedy algorithm that evaluates a

restricted set of candidate regions with a simple cost heuristic. Rather than evaluating

all possible reorderings, we determine independent regions for each anchor (migrat-

ing back home after each), reorder anchors only with the home region, and attempt

to combine adjacent regions pairwise in a greedy fashion. Steps of the algorithm will

be explained in the coming sections, but at a high level, it works as follows:

• For each anchor, expand a region, starting from the anchor, to its maximum al-

lowed extent.

– When encountering other anchors, determine if they: (i) share the same locality

set, and can be included in the region, (ii) have a symmetric locality and can be

included, (iii) can be hoisted to the home region, or (iv) represent a necessary

end to the region.

– At each step, find the inputs and outputs to the region and compute the cost

heuristic (described below) for the current region, as if any hoistable instructions

were moved before the region.

– Keep track of the best sub-region.

• Skip anchors that have already been completely subsumed within another

anchor’s best region.

• For each pair of adjacent regions (those whose maximum extents overlap or are

adjacent):

– Compute the continuations needed to migrate directly between the two.

– If the cost combined is less than the cost of the two separate migrations, then

replace the two separate regions with a new chained region containing both.

• Mark regions whose exits are the end of the task as async.

The next few sections explore this algorithm in more detail.

2.4.2.1. Expanding the region

To find regions of code that can be executed at the location of a given anchor, we start

from the anchor instruction and iteratively expand the region to include instructions

that are valid to run on that locale. Any instructions proven to not touch memory are

trivially allowed. Thanks to the previous analysis, any memory-access instructions,

including calls to functions that may access memory, will be associated with a locality

set. Any instructions in the same locality set as the current anchor are allowed. Sym-
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metric pointers, explained in §2.3.2, are valid on any locale, so any symmetric anchors

can also be included. For other accesses, we will attempt to hoist or localize them,

which will be explained next. After determining that an instruction is valid, the cost

function, explained below, is computed for the current region, and the minimum cost

region is tracked.

Though regions may have multiple exits, in order for the continuation-passing

transformation to work, they must have only a single entrance. To ensure this, basic

blocks reached by the expanding region are visited in reverse postorder, and basic

blocks with incoming edges not already in the region are disallowed and become exit

points. This over-conservatively disallows loops from being subsumed within a re-

gion, which is a potential pitfall that could be remedied with further engineering.

2.4.2.2. Cost heuristic

The cost function attempts to encode the combination of communication and execu-

tion costs inherent in migrating the given region. In the coarsest view of the runtime

system, the total amount of data moved is worth minimizing, but the execution over-

head – time spent aggregating, sending, deaggregating, blocking and waking threads

– is roughly per application-level message. These are aggregated into larger messages

by the runtime, but overhead is associated with each independent task that issues a

remote request. Therefore, our cost function has to take into account number of mes-

sages in addition to the amount of data moved.

Inputs and outputs to each region are computed from LLVM IR, which is in static

single assignment (SSA) form by design, and used to compute the size of the continu-

ation, or the total amount of data that needs to be moved, in each migration. This can

be viewed as partitioning the program dependence graph, similar to how it is done in

decoupled software pipelining [129], but attempting tominimize data crossing the par-

titions rather than exposing parallelism. Figure 2.1(b) shows the dependence graph for

HOPS, with a node for each instruction labeled by the value it produces, and arrows

showing uses of those values. Arrows that cross a region’s bounding box represent

values that must go into a continuation. Grappa’s communication mechanisms cur-

rently only support POD types, allowing Alembic to statically determine the precise

amount of data to bemoved.More dynamic object-oriented features, such as sub-type

polymorphism or serialization of arbitrary additional data, would make this cost es-

timate more difficult.

Grouping two anchors with the same locale into one region eliminates a round-
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trip message. This is modeled in the cost heuristic by subtracting the cost of those

messages for each anchor. If all exits from a region return void, this means it is the

final region in the task and the return trip to get back to the task’s home locale is un-

necessary, saving an additional message, which we also model. The resulting heuristic

equation is:

cost = sizeof(inputs+outputs)

− 2∗messageCost ∗numAnchorsIncluded

− (messageCost, if allExitsVoid)

In §2.5.3, we evaluate this tradeoff empirically to come up with a reasonable setting

for messageCost for our experimental platform.

2.4.2.3. Hoisting anchors

We saw earlier, in Figure 2.1(a), that sometimes the order in which memory accesses

are scheduled is not ideal for migrating because the instruction scheduler is assuming

a different cost model for memory accesses than what we have in mind. For exam-

ple, the load of %origin in the exit block prevents what would otherwise be an asyn-

chronous migration. It is a clear win in this case to hoist the load before both regions

because it only costs the data movement of 2 additional bytes but saves in total mes-

sages sent by allowing an asynchronousmigration. In the general case, onewould need

to explore every allowable reordering of anchor points to find the one that minimizes

messages and continuation size. In our simplified search, we only attempt to move

instructions into the first region (at the home locale), which is a clear case where re-

ordering will be beneficial. Anytime an anchor with a different locality set is reached,

we check whether it can be placed in the first region without violating dependences

or locality. We do not consider opportunities to move the access into other regions,

as it would greatly increase the complexity and search space, and we found it typically

did not pay off in the situations we encountered.

We use LLVM’s memory dependence analyses to determine if the memory opera-

tion clobbers or is clobbered by any instructions in the region or violates synchroniza-

tion ordering. Additionally, to be hoisted, stores must not be conditional (must domi-

nate all exits from the region). Typically this move has already been done by previous

passes if it is possible. Finally, we must determine if, recursively, all of the operands

that reside in the region can be hoisted.

If all of these criteria are met, then the operation can bemarked as hoistable.When

computingmigration cost, candidate regions treat themas if they had beenmoved, but
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they are not actually moved unless the minimum-cost selection includes it. Hoisting

instructions is done independent of prior region selections. There is a slight chance

that this hoisting could have made prior migrations happen if they had known, but

this is a performance, not a correctness, issue.

In the running example, hoisting both of the loads in HOPS leaves us with two

contiguous regions back-to-back, allowing us to migrate directly between them. The

phaser is symmetric, so calling complete on it can be done anywhere, so themigration

can be asynchronous.

2.4.2.4. Localizing allocas

Rather thanhoisting loads and stores before the region, in some cases it can be possible

to instead change what memory they are referring to. In particular, temporary objects

are typically allocated on the stack on entry to the function and used later. If we can

prove that a piece of stack-allocated memory is only used inside a single region, then

we can localize that temporary storage and put it in the migrated region, so that the

loads and stores using it can be done locally after migration. To determine if this is

the case, we examine all accesses to the region of memory specified by an alloca

instruction, including double-checking with the alias analysis to ensure nothing else

may be using that memory. If all of the accesses are resolvable, and they all occur in

one region, then we can move the alloca inside the region.

This check can only be done after the region has been expanded to its maximum

extent (see below). Our analysis speculatively allows the region to include accesses

to stack-allocated memory, expands as far as possible, then does this check. If any

allocated regions are not localizable, we mark them and redo the region expansion,

this time not including those accesses. This may iterate more times, but each iteration

will remove at least one speculatively-included anchor, so it will terminate quickly.

2.4.2.5. Chaining regions

After finding the maximum extents of all single-locale regions, we start evaluating

how to stitch these regions together to form a single migrating thread of execution.

We could simply migrate back to the home locale of the task after each region, and we

would still benefit from moving multiple anchors on a single locale. However, if two

regions to different locales are adjacent, additional benefit could come from hopping

directly between the two. Migrating directly saves costly messages and wake-ups but

may increase the size of the continuation.
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Locale X Locale Y Locale Z

Phaser (symmetric)

}

  ret void

  call @migrate_async(%dst, @m1, %cont)

  %cont = @continuation(<...>)

  %dst = call @locale(%B.i)

  %B.i = getelementptr %B, %i

  <load inputs from %t>

void @task(%t) {

}

  ret void

  call @migrate_async(%dst, @m2, %cont)

  %cont = @continuation(<...>)

  %dst = call @locale(%count)

  %count = getelementptr %A, %b, 0

  %b = load %local.B.i

  %local.B.i = @local_ptr(%B.i)

  <load inputs from %cont>

void @m1(%cont) {

}

  ret void

  %local.winner = @local_ptr(%winner)

exit:

  br i1 %cmp, %if.then, %exit

  %winner = getelementptr %A, %b, 1

void @m2(%cont) {

  %local.count = @local_ptr(%count)

  br label %exit

if.then:

  call @complete(@phaser, %origin, 1)

  %prev = atomicrmw add %local.count, 1

  store %i, %local.winner

  %cmp = icmp eq %prev, 0

  <load inputs from %cont>

Figure 2.2. Alembic transformation of the HOPS task doing multi-hop migration (much-

simplified LLVM IR with types elided). Code added to do the transformation (bold and high-

lighted blue) includes: for each migration, construct a continuation and find the destination

locale, and in each migrated region, extract local pointers from global pointers.

To evaluate whether continuing directly to the next region will be beneficial, we

use the same cost heuristic. We compute the continuation needed to execute the com-

bined region, the continuation from the first region to the second, and the outputs

of the combined region. If this combined cost is less than the sum of the individual

region costs, which amounts to whether the continuation between the two regions is

smaller than the cost of an additional message, then the two regions are chained. As

we continue to consider adjacent pairs, longer chains of linked regions may be gen-

erated, resulting in a task that will seem to hop around between locales, following

where its data is.

2.4.3. Transforming tasks into continuations

This section will explain at a high level how the original task is transformed accord-

ing to the choices made by the analyses above, at the level of LLVM IR. Migration is

done by extracting all of the instructions in the region into a separate function, send-

ing the continuation in a message to the remote locale, which, on receipt, invokes

the extracted function, and the output values from the region, needed for the next

continuation, are collected. If the next region is to be executed back on the original
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task, these outputs are sent back to rejoin the rest of the stack. Otherwise, if the next

hop is directly to another locale, then the continuation is constructed, and another

migration is done.

All of the data movement is handled by a generic migrate call in the runtime.

This function takes as input the destination locale, the function to run, a struct for

the continuation, and a pointer to a struct for storing the outputs. The calling task

blocks until the sequence of migrations returns to rejoin the stack. In the case where a

migrated region includes the endof the task, the variantmigrate_async is used,which

immediately frees the worker to start another task while the migrated continuation

finishes the previous task’s execution remotely.

Extraction is done using a modified version of the LLVM CodeExtractor utility.

All the basic blocks of the region to be extracted are cloned into a new function. All of

the exits are redirected to a single return block which returns the output of a phi to

differentiate which exit was taken. At the call site, this return value is used in a switch

to jump to the correct exit. Before the call, the continuation is constructed on the task’s

stack, and after the call the outputs are loaded from the other struct passed to migrate.

Figure 2.2 shows how the HOPS code ends up being transformed. The initial

task constructs a continuation with the values needed for both migrations, and com-

putes the destination locale. Inside each migrated region, we load the inputs from

the continuation. Finally, in each region, we extract and use the local pointer from

global pointers which are now local. Because the two migrations make up the rest

of the task, migrate_async can be used, which allows the initial task to return im-

mediately, though the enclosing parallel loop waits for the final migrated region to

signal complete.

2.4.4. Globalizing functions

As mentioned back in §2.3.1, methods can be called on objects via global pointers.

However, this is not expressible in C++. We allow the C++ frontend to generate these

method calls anyway and fix them ourselves.

To handle method calls on global pointers correctly, they must be made paramet-

ric on the pointer type of the receiver. This means constructing a new version of the

method where the receiver is a global pointer instead. To do this, we clone the func-

tion, then propagate the changed pointer type through all the instructions, whichmay

cause other pointer values to become global. Any local pointers referenced inside the

method are wrapped up in a new global pointer with the locale of the receiver pointer,
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including the return value if the method returns a local pointer. Finally, we replace all

calls where the receiver was cast from a global pointer with a call to the new glob-

alized version.

In fact, because methods are really just functions, we apply this same transforma-

tion on any functions that accept a local pointer but are passed a global pointer instead.

2.4.5. Put/get generation

For comparison, we also implement a version of our compiler that generates just

put and get operations. This is a fairly standard baseline for PGAS languages with-

out any optimizations enabled. Each global memory access is replaced with a call

to a corresponding remote operation in the API. After fixing up function calls with

global pointer parameters (as described in §2.4.4), all of the global memory accesses

are clearly delineated in the LLVM IR. We then simply find all instances of load,

store, cmpxchg, and atomicrmw which have a global pointer operand and replace

themwith calls to the underlying PGAS library (in our case, grappa_get, grappa_put,

grappa_compare_and_swap, etc). Tomaintain the sequential semantics implied by the

original memory operations, these operations all block the calling task.

Beyond the genericmemory access optimizations applied by LLVM, our compiler

generates fairly naive puts and gets compared to optimized communication generated

by other PGAS systems (see §2.6.3). However, the Grappa runtime dynamically aggre-

gates messages frommultiple tasks and tolerates remote access latency using massive

multithreadingwhich givemuch of the performance benefit of those other techniques

but with some runtime cost.

2.5. Evaluation

Our goal in this evaluation is to quantify the extent to which these static migration

analyses and transformations are able to match the performance of hand-tuned local-

ity optimizations. First, we evaluate the performance of Alembic on 4 irregular ap-

plication kernels. Then we probe more deeply into the effect of each optimization

using the HOPS case study. Finally, we explore the tradeoff between asynchronous

and blocking migrations in order to empirically choose a value for messageCost.
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2.5.1. Application performance

The purpose of Alembic is to be able to automatically generate taskmigrations that are

onerous to do by hand. We evaluate the analyses on 4 representative irregular appli-

cation kernels which were implemented and optimized in previous work evaluating

the Grappa runtime [116]. The existing implementations have explicit delegate calls

to do communication and move parts of the computation to different locales. These

delegates calls were tuned by hand to get the best performance out of the Grappa sys-

tem, including changes to make them asynchronous, reduce the number of messages,

and minimize data transferred.

In each application, we ported the most performance-critical sections, removing

all explicit communication and instead using the C++ extensions described in §2.3

(e.g., global*). These sections now rely on Alembic to automatically generate commu-

nication for them. In the following sections we will briefly describe the applications,

the sections ported, and the regions identified by Alembic.

2.5.1.1. BFS

Breadth-first-search is a commonkernel used to evaluate irregular application scaling,

and is the primary benchmark for the Graph500 rankings [69]. The benchmark does

a search starting from a random vertex in a synthetic graph and constructs a tree out

of parent vertices for each vertex traversed.We port the entire timed region; a snippet

which does a single level of the traversal is shown in Listing 2.2.

Alembic determines that the atomic compare-and-swap and everything after it

can be in an asynchronous migration. This includes pushing the vertex onto the next

frontier, which can be moved because GlobalQueue is symmetric and safely handles

push operations from any locale.

2.5.1.2. Connected Components

Another core graph analysis kernel is Connected Components (CC). We implement

the three-phase CC algorithm [28] designed for the massively-parallel MTA-2 ma-

chine. The first phase does multiple recursive traversals in parallel, each labeling ver-

ticeswith a color.Whenever two traversals encounter each other, an edge between the

two colors is inserted in a global set. The second phase performs the classical Shiloach-

Vishkin parallel algorithm [143] on the reduced graph formed by the edge set from the

first phase, and the final phase propagates the component labels back out to the graph.
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symmetric GlobalQueue frontier, next;

void bfs_level(Graph symmetric* g) {

  Vertex global* vs = g->vertices();

  while ( !frontier.empty() ) {

    VertexID i = frontier.pop();

    forall<async,&phaser>(adj(g,vs+i),[=](VertexID j){

      if (cmp_swap(&vs[j]->parent, -1, i))

        next.push(j);

    });

  }

  phaser.wait();

}

Listing 2.2. Code from BFS which does a single level of the traversal. Alembic identifies and

transforms the highlighted region into an asynchronous migration.

GlobalHashSet symmetric* set;

Graph symmetric* g;

void explore(VertexID r, color_t color) {

  Vertex global* vs = g->vertices();

  phaser.enroll(vs[r].nadj)

  forall<async>(adj(g,vs+r), [=](VertexID j){

    auto& v = vs[j];

    if (cmp_swap(&v.color, -1, color)){

      spawn([=]{ explore(j, color); });

    } else if (v.color != color) {

      Edge edge(color, v.color);

      set->insert(edge);

      phaser.complete(1);

    }

  });

  phaser.complete(1);

}

Listing 2.3. The first phase of Connected Components where we assign colors and insert an

edge into the set whenever two traversals conflict. Alembic detects 2 migrations, highlighted

above. The second region is only able to be asynchronous because the alloca for spawn could

be localized.
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void spmv(Graph symmetric* g, double global* X,

          double global* Y) {

  forall(g, [vx,vy](VertexID i, Vertex& v) {

    forall<async>(adj(g,v), [=,&v]

          (int64_t localj, VertexID j){

      Y[i] += X[j] * v->weights[localj];

    });

  });

}

Listing 2.4. Ported code from Pagerank. The index into weights is local, so just two chained

migrations are needed to visit the element in X and then update the element in Y.

We port the first phase, which does the traversals and insertion into the hash set

and takes themajority of execution time; a snippet is shown in Listing 2.3.Most of the

iteration is able to be subsumed in a single asynchronous migration because the stack-

allocated lambda which is passed to spawn is able to be localized, the set is symmetric,

and spawn and complete are annotated with anywhere.

2.5.1.3. Pagerank

This kernel is a common centrality metric for graphs which iteratively computes the

weighted sum of neighbors until convergence. The computation essentially amounts

to a sparse matrix dense vector multiply for each iteration, which in our implementa-

tion is parallelized over vertices in the graph as well as over the adjacencies for each

vertex. We report performance as throughput, comparable to Graph500’s TEPS mea-

sure, computed as the number of edges in the graph over the average time per iteration.

We port just this multiply section, shown in Listing 2.4, whichmakes up nearly all

of the communication and execution time. This kernel is able to benefit from doing

two continuation-passing migrations back-to-back to go from the original spawned

taskwhich is executed at the source vertexwhere the edgeweight is, to the correspond-

ing element in the source vector, and finally to the element in the resulting vector.

That multi-hop migration can all be done with asynchronous migrations, eliminating

the need for any blocking calls (except of course the main task which blocks on the

phaser used to synchronize all this work).
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Anchors Migrations Hoisted Allocas Symmetric

Application (global) (blocking) (async) accesses localized accesses

HOPS 3 0 2 2 0 1

BFS 4 2 1 1 0 5

CC 5 2 1 4 1 13

Pagerank 3 0 2 2 0 0

IntSort 5 0 1 0 0 0

Table 2.2. Static metrics: frequency of each optimization in each benchmark. Counts are for

unique source-code instances, so more than one inlining location does not count in these met-

rics. Only the ported part is counted. HOPS and Pagerank’s two asynchronous migrations are

each chained.

2.5.1.4. IntSort

This benchmark comes from theNAS Parallel Benchmark Suite [16, 120]. The second-

largest problem size, class D, ranks 0.5 billion random integers sampled from a gaus-

sian distribution using a bucket sort algorithm. The performancemetrics forNASPar-

allel Benchmarks, including IntSort, are “millions of operations per second” (MOPS).

For IntSort, this “operation” is ranking a single key, so it is roughly comparable to

our TEPS measure.

We port the phasewhich scatters elements into buckets. This is done by essentially

just appending individual elements to pre-allocated buckets, which involves a remote

fetch-and-increment and a store. The entire remote end of the scatter is able to be

done with an asynchronous migration.

2.5.1.5. Performance comparisons

To evaluate the impact automatic migration has on application performance, we

performed experiments comparing compiler-generated communication against

manually-optimized explicit delegate calls. As explained earlier, the manual im-

plementations were optimized in previous work evaluating the Grappa runtime

itself, so though they may not be the best possible implementation, they are the best

known so far. For each application, we compare 2 variants of compiler-generated
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(c) Pagerank (scale-23 graph)
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Figure 2.3. Application kernel performance: comparing manually-optimized movement

against compiler-generated migration. Experiments were done on 12 nodes with 8 cores

per node. Overall, Alembic performs competitivelywithmanually-optimized communication,

and significantly better than naive puts and gets. This performance is due in part to reduced

data movement, which is also shown. The outlier, Pagerank, is explained in §2.5.1.5.

communication: individual puts and gets, as described in §2.4.5, and Alembic with

the messageCost which will be chosen empirically in §2.5.3.

Experiments were run on a small cluster with 12 nodes, each with two 6-core

Intel Westmere 2.66 GHz Xeon processors with hyperthreading disabled, 24 GB of

memory, and 40GbitMellanoxConnectX-2 InfiniBand interconnect. For these exper-

iments we run 8 Grappa processes per node as this gives more reliable performance.

The results in Figure 2.3 show the performance of each application as a throughput
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measurement (bigger is better). Also plotted is the total number of bytes transferred

during execution, which is dominated by application data such as puts and gets or

continuations.

It is clear that the naive put/get model is insufficient, despite the the runtime’s

efforts to mask latency. On average, manual delegates performed 7.6x better than

put/get. This vast performance pitfall is due to the much larger number of round-trip

messages that must be sent, and is echoed in the larger total amount of datamoved. By

looking at the static migration metrics in Table 2.2, we can get a sense for how many

messages are saved. For instance, IntSort performs 5 remote accesses per scatter oper-

ation, which can be donemanually with a single async delegate, a ratio of 10messages

to 1, so the performance difference should be drastic.

One the other hand, for Pagerank the discrepancy is smaller. The three remote

accesses are transformed into two chained migrations, but the second one is back at

the source locale, so the put/get implementation, which only does one get, moves less

data than the transformed version. However, the additional scheduling overhead of

waking the blocked task is such that the asynchronous version is still faster.

Alembic-generated migrations perform favorably with manual delegates, on av-

erage achieving 82% of their performance. The cause of this shortfall is visible in

the total data moved metric – Alembic moves more data in each of the applications.

Rather than doing template specialization and inlining as the C++ code does, Alembic

currently uses a C-style interface for migrate which requires an additional function

pointer and phaser pointer in each message, which, for messages on the order of 16-

32 bytes, is significant.

Another situation where Alembic-generated continuations are larger than neces-

sary iswhen it includes valueswhich could be re-computed.One example is in IntSort,

where rather than computing two field offsets from the base pointer, it includes both

pointers in the continuation.

These shortcomings can of course be remedied with some engineering effort. A

technique analogous to C++ template specialization could be used by the code extrac-

tion pass to make optimized versions of migrate, eliminating the need for the extra

arguments and allowing opportunities to pass arguments through registers. Common

register allocation techniques could be applied to determine when to rematerialize [35]

values to save space.
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Figure 2.4. Performance of HOPS usingmanual communication, naive puts and gets, or Alem-

bic migration, with various features disabled. We can see that only with all features enabled

does Alembic produce the same number of messages as the manual version.

2.5.2. HOPS Case Study

Our goal with this study is to explore how various optimizations implemented

by Alembic affect its performance. Put/get does 3 blocking remote accesses, while

the manually-optimized version and the Alembic version both do two chained

asynchronous migrations. Figure 2.4 shows three metrics: execution time, total

number of messages, and total data movement. We can see that blocking migrations

end upmovingmore data even than put/get. This is because of the additional function

pointer and phaser pointer explained earlier, which results in the greater amount

of data for Alembic compared with manual. The message count metric matches our

expectations closely: both blocking versions have the same number of messages, the

next bar is allowed to do an asyncmigration, saving a return trip, and the full Alembic

additionally avoids yet another message by hopping directly between two locales. In

the end, Alembic achieves 95% of hand-tuned performance for HOPS.

2.5.3. Measuring message cost

The heuristic which drives region selection, described in detail in §2.4.2.2, relies on

having an estimate of the relative cost of each message. To get a rough idea of what a

good setting for this message cost may be, we construct another variant of GUPS. The
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Figure 2.5. Exploring the tradeoff between asynchronous and blocking migrations. The async

version must carry additional data with it, while blocking can leave its data behind. Past 64

bytes, blocking wins out, but performance degrades slowly.

goal is to measure the tradeoff betweenmaking larger continuations, requiring larger

messages for each migration, compared to the benefits of async migrations. For this

experiment, GUPS is modified to do additional work after the increment to A[B[i]]

– it copies an array of randomly-generated values into a static variable on the locale.

For the first experimental condition, we manually do an asynchronous migration

containing the GUPS increment and the array computation, so the statically-sized

data array must be included in the continuation, and synchronization is done via the

default phaser. Alternatively, the second condition leaves the data array on the origi-

nal stack, does a blocking migration to do the increment, and returns to do the array

computation on the original locale. We then vary the size of the data array and mea-

sure the performance.

The results, shown in Figure 2.5, show that blocking performance is flat, because

the communication, which dominates execution time, is constant. The asynchronous

migration, however, varies greatly as the continuation’s size changes. For smaller

amounts of data, avoiding the return message and task wakeup is a clear win (3.5x

better than blocking). As continuation size increases, there is an initial drastic drop

in performance. This is due to some logic in Grappa’s communication layer that

optimizes for fitting messages plus some additional metadata in a single cacheline.

After that initial drop, however, performance continues to degrade as more memory
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and network bandwidth is consumed. In these experiments on GUPS, the advantage

shifts to the blocking version around 64 bytes of additional data.

Because of this slow degradation, it is safe to err on the larger side when choos-

ing what to set messageCost to. In our case, we have chosen to set messageCost to 80,

which is large enough that in our applications, whenever it is possible tomigrate asyn-

chronously, the compiler chooses to do so.

2.6. Related work

Program partitioning to reduce communication has been explored in a variety of sys-

tems previously. These can broadly be separated into solutions related tomoving com-

putation closer to data, offloading computation to a more capable locale, and other

communication optimization techniques.

2.6.1. Computation migration

2.6.1.1. DSM systems

Computation migration was employed in multiple early DSM systems, most notably

MCRL [84, 85] and Olden [39, 131], to improve performance for unpredictable ac-

cess patterns. MCRL, and prior simulation work in the Prelude language, generated a

continuation and appropriate messages to perform a lightweight migration, but only

at user-annotated procedure calls. On the other hand, Olden performed a relatively

heavyweight threadmigration (registers and top stack frame) at every remotememory

access. Both used heuristics similar to Alembic’s to predict when to migrate – Olden

used static analysis and annotations to determine how many accesses are co-located,

and MCRL used the dynamic read and write load to determine how to balance work.

Alembic’s migrations are both lightweight likeMCRL’s, and may happen anywhere in

a program, as in Olden. Alembic’s aggressive instruction reordering and alloca local-

izing further improve the effectiveness of computation migration.

2.6.1.2. Traveling threads

The traveling thread executionmodel [114] is another notable instance ofmoving exe-

cution context to data. In this executionmodel, threads are split up into much smaller

threadlets, consisting of just a few instructions, which represent a migration to execute
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that part of the code closer to the memory it accesses. This work is part of a larger ef-

fort to overcome the von Neumann bottleneck by leveraging processing-in-memory

(PIM) technology [94]. Aimed at offloading small snippets of execution to the mem-

ory system, their notion of locale is extremely fine-grained, at the level of banks of

physical memory. Some of the analyses they describe use a similar minimum-cut op-

timization strategy over the dataflow graph to determine where to split threadlets.

Our work could be seen as implementing a form of traveling thread architecture in

software on commodity clusters.

2.6.1.3. Charm++ & ParalleX

Charm++ [92] and ParalleX [91] are event-driven distributed-memory programming

models based on sendingmessages between dynamicallymovable objects. Thesemod-

els allow for a form of computation migration via fine-grained asynchronous active

messages. While these models provide opportunities for latency tolerance and scala-

bility, reasoning about sequential control flow can be difficult. Alembic comes from

the opposite direction, taking sequential tasks and turning them into asynchronous

messages.

2.6.2. Computation offload

Automatic programpartitioning has also been explored in the domain ofmobile appli-

cation offloading, where the goal is to reduce the load on resource-constrained clients.

Wang and Li [161] partition statically based on a cost heuristic, but rather than using a

fixed cost, specialize formultiple cost ranges and select among them at runtime.Other

work in dynamic object-oriented languages [155, 162] has modeled communication

patterns with object relation graphs, assigning costs according to a target platform

and doing min-cut analyses to partition computation and place objects. In the inter-

est of keeping sensitive data on the server, Chong et al. [46] used a similar notion of

“anchoring” computation and optimizing communication based on those constraints,

in this case for security.
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2.6.3. Communication optimization

2.6.3.1. UPC

Unified Parallel C (UPC) [40] is a PGAS languagewith a number of compiler optimiza-

tions to make communication more efficient for the runtime. In addition to common

optimizations such as redundancy elimination, the UPC compiler coalesces puts and

gets [44] and tolerates latency by automatically making some remote memory oper-

ations asynchronous [45]. The latter optimization involves aggressive reordering of

memory accesses and coordination of data dependences. Expressing global accesses

as C++ pointer dereferences allows us to leverage built-in optimizations, such as sim-

ple redundancy elimination, but we do not do static coalescing. The Grappa runtime

dynamically aggregates requests and uses programmer-specified parallel tasks to tol-

erate latency. These techniques, while improving performance by making communi-

cation more efficient, do not significantly affect total data movement as migration

has the potential to.

2.6.3.2. FortranD

An early PGAS-like programming language, FortranD [77], used layout information to

partition straight-line programs to place computation where its data is. Like modern

PGAS languages, FortranD has ways to express at a high level how data is distributed

across locales, which it uses to determinewhere to run iterations of loops and generate

communication, using what they call the owner computes rule. For these techniques

to be effective, they need global knowledge of layout, which is not always possible,

especially for workloads where layout is dependent on the data.

2.6.3.3. Chapel & X10

Chapel [42] and X10 [43], two PGAS languages in active development, employ a mix

of techniques leveraging high-level information about data layout to optimize com-

munication, such as coalescing communication into bulk operations and spawning

tasks with their data [21, 138]. These languages also support explicitly running blocks

of code on other locales (via on or at statements) which operate the same as Grappa’s

delegates. To the best of our knowledge, that work has not included automatically

splitting up tasks and migrating them to improve locality, which is important when
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there is no “good” initial task placement, and allows the code to remain readable –

free of cumbersome nested migration blocks.

2.7. Discussion

Rather than always moving data around the system, it can be significantly more effi-

cient to move computation to data, provided the execution context is small and the

cost of migrating execution is low. On the set of irregular application kernels eval-

uated in this work, Alembic provides performance close to that of hand-optimized

migration – on average within 18% , and is 5.8× faster than naively generated com-

munication. The key observation in this work is that potential migration points can

be determined statically by the compiler, and execution context in many cases can be

quite small. This is largely due to the nature of theGrappa programmingmodel—pro-

grammers are encouraged tomaximize concurrency by creating asmany small threads

as possible. The technique, which finds co-located memory accesses and chooses mi-

grations thatminimize communication, should be generally applicable to other PGAS

environments and even in non-PGAS situations, such as determining code offload

opportunities in mobile applications.

A few important caveats do apply, however. First of all, the size of the execution

context is not always statically determinable; the applications evaluated use fixed-size

data types with no dynamic allocations. Even a simple string value could break this

fragile assumption. There is no obvious barrier to allowing Alembic continuations

to contain dynamically sized context, but the determination of when to migrate may

become more difficult and data-dependent. This leads to another potential downfall,

inherent in any automatic solution: in some situations the compiler may make the

wrong choice, and programmers may have a more difficult time tracking down this

performance bug. Though the compiler-generated code is functionally correct, it can

be difficult to tell what exactly the compiler chose to do and why. The programmer

always has the option to write their own migrations manually using delegate opera-

tions, but as soon as they do so they introduce the chance for bugs and make the code

less readable. Rather than rewriting code whenever one doesn’t trust the compiler’s

decision, it would be advantageous to be able to understand the migrations chosen by

the compiler and have ways of controlling the decisions. In order to build and debug

our implementation, we built rudimentary tools that generated graph visualizations
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of the transformed tasks, in LLVM IR. These visualization tools could be improved

and made available to users, but we have not done so yet.

This chapter has tackled one of the core tradeoffs in distributed systems between

locality and parallelism by automatically and efficiently moving computation closer

to data when beneficial, freeing programmers from this burden. The next chapter will

start to address synchronization and consistency and the role that datatypes can have

in providing opportunities to increase parallelism without sacrificing consistency.
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3. Distributed combining
Reducing contention with cooperation

3.1. Introduction

Memory consistencymodels [3, 146] define the observable orders of accesses tomem-

ory. Sequential consistency (SC), which enforces that all accesses are committed in pro-

gram order and appear to happen in some global serializable order, is commonly ac-

cepted as the easiest to reason about. To preserve SC, operations on shared data struc-

turesmust be linearizable [76]; that is, appear to happen atomically in some global total

order.

Enforcing linearizability is notoriously difficult to do in a scalable way due to

contention. The simplest way is to have a single global lock to enforce atomicity and

linearizability through simple mutual exclusion. Serializing accesses in this way lim-

its performance to the speed of a single core, though in practice it is often even worse

due to wasted work as threads repeatedly attempt to acquire contended locks. Lock-

free concurrent data structures improve performance by using atomic primitives such

as fetch-and-increment to implement necessary synchronization. Some examples in-

clude the Treiber stack [157] and Michael-Scott queues [110]. However, developing

specialized lock-free data structures is itself an ongoing field of research, and with

many concurrent updaters, even well-designed synchronization schemes suffer from

contention as multiple threads fight to acquire write access to a cache line. With the

massive amount of parallelism in a cluster of multiprocessors and with the increased

cost of remote synchronization, the problem is magnified.

A general synchronization technique called combining encourages threads to co-

operate rather than contend. Rather than every thread attempting to gain full write

access to the shared data structure, with combining threads coordinate with each

other first in some way to merge their operations before delegating one thread to

perform a single combined operation on the shared data structure. Combining allows

even a data structure with a single global lock to sometimes scale better than compli-

cated concurrent fine-grained lock-free implementations. Moreover, instead of need-
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ing a new complex scalable synchronization mechanism for each new data structure,

combining-based data structure implementations can all re-use the same underlying

combining framework; each data structure just defines how to merge its operations.

Several combining techniques exist, differing mainly in the structure used coordinate

among threads: fixed trees [166], dynamic trees (or “funnels”) [90, 142], randomized

trees [4], or flat queues [72].

This chapter describes how the combining paradigm can be applied to distributed

data structures in a partitioned global address space (PGAS) runtime such as Grappa

(refer to §2.2 for an overview of PGAS models and Grappa). Our distributed combin-

ing approach allows threads on each node to cooperate locally to merge operations

before applying them globally, reducing contention on linearizable global data struc-

tures. This enables a scalable sequentially consistent environment despite the massive

amount of concurrency that the Grappa runtime uses to tolerate remote access la-

tencies. Using a generic combining framework, we implement multiple global data

structures — queue, stack, hash set, and hash map — and show that they are scalable,

unlike naive lock-based implementations, with close to the same throughput as cus-

tom distributed synchronization schemes.

3.2. Distributed combining

One form of combining that has shown to be particularly effective for many-core

shared memory systems is called flat combining [56, 72, 73] because it employs a single

scalable queue that threads add operations to. A single thread then walks this queue,

combining the operations in data-structure-specific ways, employing single-threaded

optimizations now that it is free from interference. The benefits of flat combining

break down into three components: improved locality, reduced synchronization, and

data-structure specific optimizations. We will explore how this works in a traditional

shared-memory system, and then describe how the same concepts can be applied to

distributed memory.

3.2.1. Shared memory

By delegating all work to one core, locality can be improved and synchronization re-

duced. Consider a concurrent stack with an array of pre-allocated storage and an in-

dex keeping track of the current top of the stack. In a lock-based approach, whenever

a thread attempts to push onto the stack, it must acquire a lock, put its value into the
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storage array, bump the top pointer, and then release the lock. When many threads

contend for the lock, all but one will fail and have to retry. Each attempt consumes

memory bandwidth and may force an expensive memory fence depending on the ar-

chitecture, and as the number of threads increase, the fraction of successes plummets.

With flat combining, threads add their push and pop requests to a shared publi-

cation list. Then they each attempt to acquire the lock once; the thread that succeeds

becomes the combiner while the rest that failed just sleep instead of retrying. The com-

biner walks the publication list, performs each request, returning results of any reads

to the requester thread, and releases the lock when done. This allows the core run-

ning the combiner thread to keep the data structure in its cache, reducing thrashing.

At first glance, it appears that we’ve only shifted the synchronization to the publica-

tion list instead of the stack. However, if a thread performsmultiple operations, it can

leave its publication record in the list and amortize the synchronization cost, and peri-

odically, disused publication records will be garbage collected. This same publication

list mechanism can be reused in other data structures, saving each from needing to

implement this structure itself.

So far, this has improved locality and amortized synchronization, but we can do

better if we take advantage of data-structure-specific properties that allow multiple

operations to be performed together more efficiently than separately. As an example,

we know that pop will take the last pushed value off the top of the stack. Rather than

going to the effort of pushing a new value only to immediately pop it off, the combiner

can recognize a pop following a push and immediately return the result of the pop to

the caller, annihilating the matching push and pop operations so that they never show

up on the shared data structure. In each round, only unmatched pushes or pops end

up being applied to the shared data structure, drastically reducing the work done to

the shared data structure. Other data structures can benefit in similar ways, such as

tree structures sharing a single traversal for multiple inserts.

3.2.2. Distributed memory

In a distributed setting, particularly with Grappa, the amount of concurrency is much

greater than in a shared memory multiprocessor, as is the cost of global synchroniza-

tion. With thousands of threads per core, as is typical for Grappa applications, a rea-

sonably sized cluster will likely have millions of workers, so contention will be a huge

problem.However, becauseworker threads are cooperatively scheduled, some aspects,

such as local synchronization, become easier. Figure 3.1 shows a linearizable global
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Figure 3.1. Example of distributed combining on a global stack. (A) Worker threads locally

combine their operations using the combiner proxy. (B) The combined operation is executed

on the shared data structure, using the global lock to ensure linearizability. (C) Some opera-

tions can be locallymatched, such as this popwhichmatcheswith a push locally so that neither

operation ever is ever committed to the global stack.

stack distributed over 3 nodes in a cluster. The top pointer is owned by one master

node (in this case Node 0), conceptually protected by a lock. Usually, in order to do a

push, a worker would need to perform a remote delegate operation on the node that

owns top, find where to put the value, potentially do a remote operation to write the

new value, then increment top and return control back to the worker. With lots of

workers on each node issuing operations on the shared structure, the master node

would get swamped in requests, and each worker would have to wait a long time as

all the operations serialize on the master.

Employing the combining paradigm here, we wish to allow multiple workers to

cooperate and merge their operations into larger combined ones, so that the stack

typically handles at most one request per node rather than thousands. In order to co-

operate, the threads need to all be able to find a publication list to add their operations

to. To facilitate threads finding each other locally, rather than one global publication

list, each node or core gets its own. In Grappa, the global stack allocates a “proxy” ob-
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ject using a symmetric allocation (see §2.3.2), so that each node will have its own copy.

Each proxy keeps track of the outstanding operations that have been added to the pub-

lication list, preferably in a way that local optimizations, such as matching pushes and

pops, can be done. In the case of the global stack, each proxy is itself a little miniature

stack, so that pops can be matched with local pushes. In Figure 3.1 (C), we seeWorker

1’s push(5) gets matched withWorker 2’s pop, so that node does not need to synchro-

nize with themaster at all. However, Node 1 ends upwith two unmatched pushes that

get locally merged into a single operation that pushes two items at once. This com-

bined operation can be applied on the global stack (B) with one message to bump top,

then another message to add both items to the array. Similarly, on Node 0, two pops

end up being sent to the global stack because they were unable to be matched locally.

3.2.3. Ensuring linearizability is maintained

In the context of Grappa, sequential consistency means that within a thread, opera-

tions will be in thread order and that all threads will observe the same global order.

The Grappa memory model is essentially the same as the C++ memory model [29, 30,

88], guaranteeing sequential consistency for data-race free programs. To be conser-

vative, delegate operations block the calling worker until they have become globally

visible, ensuring they can be used for synchronization. As such, delegate operations

within a task are guaranteed to be globally visible in program order and all tasks ob-

serve the same global order. Operations on synchronized data structures must pro-

vide the same guarantees. Because it is not immediately obvious that this distributed

version of flat combining preserves sequential consistency, we now argue why it does.

To behave in accordance with sequential consistency, operations on a particular

data structure must obey a consistent global order. One way to provide this is to guar-

antee linearizability [76] of operations, which requires that the operation appear to take

effect globally at some instantaneous point during invocation of the API call. This

ensures that a consistent total order can be imposed on operations on a single data

structure. For operations to be globally linearizable, two conditions must be met:

1. The execution of local combined operations must be serializable with respect to

each other. This will be true as long as each worker blocks until its operation is

either satisfied locally or until the combined operation commits globally.

2. Combined operations must be committed atomically in some globally serializable

order. This holds as long as the implementation of combined operations ensure

atomicity correctly, either by holding a lock on the master or some other form of
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synchronization. Typically, combined operations use the same synchronization as

individual operations before combining was introduced.

Provided these two conditions are upheld, it is straightforward to show that the over-

all data structure will be linearizable: each combined operation can be thought of as

a batch of operations which get applied sequentially, and each batch itself is serializ-

able with respect to each other. This serial “concatenation” of serial batches implies

a total global order.

The validity of locally satisfied operations, such aswhen stack pushes and pops are

matched with each other, is not obviously covered by the above argument. However,

linearizability does in fact hold for these as well: because matched operations “annihi-

late” each other, they are not visible to any other threads. Therefore, it does notmatter

where they “appear” in the global order. As long as locally satisfied operations obey

this invisibility criteria, then the data structure can still be considered linearizable.

Combining set andmap operations exposesmore nuances in the requirements for

consistency. Insert and lookup operations performed by different tasks are inherently

unordered unless synchronized externally. Therefore, a batch of these operations can

be committed globally in parallel, since they are guaranteed not to conflict with each

other.Note that two inserts to the same key can bemerged, but both callersmust block

until the combined insert is complete to ensure that program order is preserved. Sim-

ilarly, lookups can piggy-back on other lookups of the same key. Using intuition from

store/write buffers in modern processors, it is tempting to allow a lookup to be satis-

fied locally by inspecting outstanding inserts. However, this would allow the local or-

der inwhich keyswere inserted to be observed. To preserve SC, that same orderwould

need to be respected globally, forcing each batch to commit atomically with respect to

other cores’ batches. Enforcing this would be prohibitively expensive, requiring locks

to be held on all the affected buckets, so a cheaper solution is chosen: lookups only get

their values from the global data structure, and batches can be performed in parallel.

3.3. Evaluation

To evaluate the impact of distributed combining on performance, we implemented

a generic combining framework for the Grappa runtime and used it to implement

some common global data structures:

• Global vector-based types: aQueue and a Stack, using a single global lock to ensure

linearizability.
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Figure 3.2. Raw performance of data structures: throughput results for two different workloads,

with all threads in the system performing operations on a single shared data structure. We

see that the stack and queue, with a single global lock, perform terribly (~1M ops/s) with-

out combining as expected, but with combining they scale nearly linearly. Global hashset and

hashmaps both have locks per bucket, allowing them to scale better, but combining results in

a 2x improvement in peak throughput.

• HashMap (and HashSet, which shares most of the implementation), with chaining

and no re-hashing, using fine-grained per-bucket locks.

We measured the performance of the data structures with simple stress tests with dif-

ferent workload characteristics, as well as in two graph analytics benchmarks. Exper-

iments were run on a cluster of AMD Interlagos processors. Nodes have 32 2.1-GHz

cores in two sockets, 64GB of memory, and 40Gb Mellanox ConnectX-2 InfiniBand

network cards connected via a QLogic switch.

3.3.1. Raw data structure performance

We start with a microbenchmark to measuring the performance of the global data

structures in isolation: all threads on all cores in the system randomly perform opera-

tions on a single shared data structure instance, with and without combining enabled.

Throughput results are shown in Figure 3.2.

Without combining, neither the stack nor the queue scale at all, reaching their

peak throughput of around 1 million operations per second with less than 8 nodes.
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However, with combining, both the queue and stack have nearly linear scaling out to

64 nodes. The two perform identically with a workload of all push operations because

they perform the same work, but on a mixed workload with push and pop operations,

the queue performs somewhat worse due to fewer combining opportunities. On the

other hand, the stack achieves significantly higher throughput on mixed workloads

due to local matching of pushes and pops, resulting in a 500x throughput improve-

ment with combining, 2.5x better than with 100% pushes.

The HashSet and HashMap both scale significantly better than the stack and

queue without combining because they have per-bucket locks, so synchronization is

distributed over all the nodes, as long as the workload is uniformly distributed. How-

ever, they reach their peak throughput of around 400M operations per second at 32

nodes.With combining enabled, there are opportunities for inserts to combine locally,

resulting in a 2x improvement for the 100% insert workload. Because lookups cannot

be satisfied by local inserts, we see a smaller improvement on the mixed workload.

3.3.2. Graph analytics benchmarks

We also evaluate the usage of these data structures in two common graph analytics

benchmarks:

• Breadth First Search (BFS) benchmark used for the Graph500 ranking [69]. Our

BFS algorithm employs a global queue which represents the frontier of vertices to

be visited in each level. Our implementation employs the direction-optimizing al-

gorithm by Beamer et al [23]. The hand-optimized implementation uses a custom

asynchronous “bag” data structure that keeps data local when possible rather than

enforcing strict ordering of the queue.

• Connected Components (CC) is another important graph analysis kernel. We im-

plement the three-phase CC algorithm [28] that was designed for the massively

parallel MTA-2 machine because of the architecture’s similarity to Grappa. The

algorithm involves the creation of a reduced graph by building a set of edges that

may be at the boundary between components.We use the global HashSet for build-

ing this reduced edge set, compared with a custom approach that uses a different

set on each node and merges them later, avoiding much of the communication

required for the global set.

Both kernels are run on a synthetic power-lawgraph specified by theGraph500 bench-

mark, with a scale of 26 (64 million vertices, 1 billion edges). Throughput is reported

using the Graph500 metric, “traversed edges per second” which is simply a rate met-
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Figure 3.3. Performance of graph analytics kernels with different implementations of the core

data structure. We see that without combining, the naive data structure performs poorly, but

combining performs nearly as well as a custom data structure that relies on additional asyn-

chrony.

ric based on the size of the graph; we use the same metric for connected components,

though the algorithm does significantly more work than a single graph traversal.

Our results, shown in Figure 3.3, show that without combining, the naive imple-

mentations of these common data structures severely hinder the performance and

scaling of these straightforward graph algorithms.However,when employing combin-

ing, the same data structures are able to perform nearly as well as special customized

data structures. For BFS, combining eliminates most of the additional synchroniza-

tion required formaintaining queue order, performing almost as well as the “bag” data

structure. For CC, we again see that the combining HashSet achieves roughly twice

the throughput, though it does not scale quite as well as the custom version which

uses separate sets. This custom approach requires knowing that the sets can be built

independently and merged later without sacrificing correctness or losing too much

optimization opportunity, which is not always the case.

3.4. Discussion

Distributed combining is an important technique for reducing contention on globally

shared data structures. It leverages the associativity of operations to allow them to be

merged in parallel before being applied globally to the shared data structure. Com-
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bining has previously been used in shared memory multiprocessors to improve local-

ity, reduce synchronization, and leverage data-structure specific optimizations. This

work applied those techniques to a distributed environment where locality is even

more essential and synchronization is costly. The technique works by essentially par-

allelizing the synchronization required for enforcing linearizability and distributing

it among the many nodes in the system. This allows even simple locking protocols to

scale, making it simpler to implement correct, scalable data structures.

Another interesting observation of this work is that there can be significant per-

formance improvements in instances where the common ADT, such as a set or queue,

is more strict than necessary for the application — both of the hand-optimized graph

analytics kernels used customdata structures that required less synchronization. Even

though the traditional BFS algorithm calls for queues of vertices to visit, the optimized

distributed implementation recognized that the order of vertices in each level is unim-

portant, so uses a custom “bag” data structure instead, which can be implemented

with significantly less synchronization in a distributed environment. Similarly, the

connected components algorithm called for one shared set data structure, but the op-

timized distributed version recognized that it was beneficial to reduce communica-

tion and synchronization by keeping many separate sets on each node and merging

them later.

The next chapter builds on this idea of recognizingwhich data type best expresses

the desired semantics. It will introduce a new programming model based on using

ADTs to communicate application-level properties to the underlying storage system,

and an extensible implementation that allows custom ADTs to be added to reduce

synchronization as much as possible. In that work, we will see another application of

distributed combining to improve the performance of distributed transactions.
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4. Claret
Exposing concurrency in transactions with ADTs

4.1. Introduction

4.1.1. Ubiquitous power laws

In today’s online ecosystem, power laws govern everything from the number of fol-

lowers a user has to the popularity of a given post while real-time events and network

effects can lead to sudden traffic spikes at unpredictable times. Because of their inter-

active nature, this irregular, highly skewed access pattern leads to contention in data-

stores as many clients attempt to concurrently update the same records. Even content

consumption generates write traffic as providers track user behavior to personalize

their experience, target ads, or collect statistics [33].

To discuss this more concretely throughout the rest of this chapter, we will use an

eBay-like online auction service, based on the well-known RUBiS benchmark [10]. At

its core, this service allows users to put items up for auction, browse auctions by region

and category, and place bids on open auctions. While running, an auction service is

subjected to a mix of requests to open and close auctions but is dominated by bidding

and browsing actions. Studies of real-world auction sites [5, 6, 107] have observed

that many aspects of them follow power laws. First of all, the number of bids per item

roughly follow Zipf’s Law (a zipfian distribution). However, so do the number of bids

per bidder, amount of revenueper seller, number of auctionwins per bidder, andmore.

Furthermore, there is a drastic increase in bidding near the end of an auction window

as bidders attempt to out-bid one another, so there is also a realtime component.

An auction site’s ability to handle these peak bidding times is crucial: a slowdown

in service caused by a popular auction may prevent bidders from reaching their max-

imum price (especially considering the automation often employed by bidders). The

ability to handle contentious bids directly impacts revenue, as well as being responsi-

ble for user satisfaction. Additionally, this situation is not suitable for weaker consis-
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-> max bid: 50-> max bid: 50

put('UserBid:Alice:7', 40)

if 40 > get('MaxBid:7'):

  put('MaxBid:7', 40)

  put('MaxBidder:7', 'Alice')

put('UserBid:Bob:7', 50)

if 50 > get('MaxBid:7'):

  put('MaxBid:7', 50)

  put('MaxBidder:7', 'Bob')

get('MaxBid:7')

get('MaxBidder:7')

Bid(item: 7, 

    bidder: 'Alice',

    price: 40)

Applica'on level Key/value store level

View(item: 7)

Bid(item: 7,

    bidder: 'Bob',

    price: 50)

✗
✓ ✗

✗

topk.add('ItemBids:7', 40, 'Alice')

set.add('UserBids:Alice', (7, 40))

ADT-store level

topk.add('ItemBids:7', 50, 'Bob')

set.add('UserBids:Bob', (7, 50)) 

-> max bid: 50

topk.top('ItemBids')

✓

Figure 4.1. At the application level, it is clear that bid transactions commute, but when trans-

lated down to put and get operations, this knowledge is lost. Using an ADT like a topk set

preserves this commutativity information.

tency, so we must find ways to satisfy performance needs without sacrificing strong

consistency.

4.1.2. Finding concurrency

To avoid catastrophic failures and mitigate poor tail behavior, significant engineer-

ing effort must go into handling these challenging high-contention scenarios. Writes

are such a problem because they impose ordering constraints requiring synchroniza-

tion in order to have any form of consistency. Luckily, many of these ordering con-

straints are actually irrelevant from the perspective of the application. For example,

it is not necessary to keep track of the order in which people retweeted Ellen’s fa-

mous celebrity selfie at the Oscars [15]. In particular, some operations are commuta-

tive, meaning the order in which they occur does not change the observable outcomes.

If the system knew exactly which constraints were relevant to the application, then

it could expose significantly more concurrency, allowing it to handle spikes without

sacrificing correctness.

Consider the auction service example again. At the application level, it should be

clear that bids on an item can be reorderedwith one another, provided that the correct

maximum bid can still be tracked. When the auction closes, or whenever someone

views the current maximum bid, that imposes an ordering which bids cannot move
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beyond. In the example in Figure 4.1, it is clear that the maximum bid observed by

the View action will be the same if the two bids are executed in either order. That is

to say, the bids commute with one another.

If we take the high-level Bid action and implement it on a typical key/value store,

we lose that knowledge. The individual get and put operations used to track themaxi-

mum bid conflict with one another. Executing with transactions will still get the right

result but only by ensuring mutual exclusion on all involved records for the duration

of each transaction, serializing bids per item.

4.1.3. Using abstract data types with Claret

In this work, we propose a new way to leverage abstract data types (ADTs) to improve

the performance of distributed transactions in key-value datastores by exposing con-

currency thatwas already present. ADTs allow users and systems alike to reason about

their logical behavior, including algebraic properties like commutativity, rather than

the low-level operations used to implement them. The datastore can leverage this

higher-level knowledge to avoid conflicts, allowing transactions to interleave and ex-

ecute concurrently without changing the observable behavior. Programmers benefit

from the flexibility and expressivity of ADTs, reusing data structures from a common

library or implementing custom ADTs for their specific use case.

Our prototypeADT-store,Claret, demonstrates howADTawareness canbe added

to a datastore to make strongly consistent distributed transactions practical. It is the

first non-relational system to leverage ADT semantics to reduce conflicts between

distributed transactions. Rather than requiring a relational data model with a fixed

schema, Claret encourages programmers to use whatever data structures naturally

express their application.

Prior work in databases and distributed systems have used properties such as

commutativity to reduce coordination, by either relying on a predefined relational

schema [14, 47, 75, 163] or restricting operations to only those that are coordination-

free [8, 113, 140]. However, schema-lessNoSQLdatastores like Redis [136] are becom-

ing increasingly popular for building web services, in part because they allow more

flexibility and control over data structures and are more easy to scale. In addition

to Redis, many [11, 22, 58, 160] support common collection types like lists, sets, and

maps, with custom operations for each type. However, these datastores typically do
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not provide support for distributed transactions4 due to the high overhead of naive

implementations.

Claret uses the logical properties of data types to communicate application-level

semantics to the system so it can perform optimizations on both the client and server

side. In §4.3, we show how commutativity can be used to avoid false conflicts (boosting)

and ordering constraints (phasing), and how associativity can be applied to reduce load

on the datastore (combining).

On high-contention workloads, the combined optimizations achieve up to a 50x

improvement in peak transaction throughput over traditional concurrency control

on a synthetic microbenchmark, up to 2x two applications: an auction benchmark

based on Rubis [10] and a Twitter clone based on Retwis [137]. While Claret’s opti-

mizations help most in high-contention cases, its performance on workloads with lit-

tle contention is unaffected. Claret’s transactions achieve 67-82% of the throughput

possible without transactions, which represents an upper bound on the performance

of our datastore.

This work makes the following contributions:

• Design of an extensible ADT-store, Claret, with interfaces to express logical proper-

ties of new ADTs

• Implementation of optimizations leveraging ADT semantics: transaction boosting,

operation combining, and phasing

• Evaluation of the impact of these optimizations on raw transaction performance

and benchmarks modeling real-world contention

In this chapter, we describe the design of the system and evaluate the impact ADT-

enabled optimizations have on transactionperformance. But first,wemust delvemore

deeply into what causes contention in real applications.

4.2. System model

The concept of ADTs could be applied to many different datastores and systems. For

Claret,we focus on one commonly employed systemarchitecture, shown inFigure 4.2:

a sharded datastore shared by many stateless replicated application servers within a

single datacenter. For horizontal scalability, datastores are divided into many shards,

4Hyperdex is the exception, though its Warp concurrency system [59] uses an orthogonal approach
called transaction chopping, not knowledge of ADT operations.
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Datacenter

Shard 1Shard 0

Frontend

server

Frontend

server

Frontend

server

Frontend

server

Concurrency control

(combining)

Claret (server)

Transac7on coordinator

(boos+ng, phasing)

Claret (client)

!

Sharded datastore

End users (mobile, web proxies)

Replicated applica7on 

servers

Figure 4.2. System model: End-user requests are handled by replicated stateless application

servers which all share a sharded datastore. Claret operates between these two layers, extend-

ing the datastorewith ADT-aware concurrency control (Claret server) and adding functionality

to the app servers to perform ADT operations and coordinate transactions (Claret client).

each containing a subset of the key space (often using consistent hashing), running

on different hosts (nodes or cores). Frontend servers are the clients in our model, im-

plementing the core application logic and exposing it via APIs to end users that may

be mobile clients or web servers. These servers are replicated to mitigate failures, but

each instance may handle many concurrent end-user connections, mediating access

to the backing datastore where application state resides.

Claret operates between application servers and the datastore. Applications

model their state using ADTs and operations on them, as they would in Redis, but

differing from Redis, Claret strongly encourages the use of transactions to ease rea-

soning about consistency. Clients are responsible for coordinating their transactions,

retrying if necessary, using multithreading to handle concurrent end-user requests.

A new ADT-aware concurrency control system is added to each shard of the core

datastore. ADT awareness is used in both the concurrency control system and the

client, which will be explained in more depth in §4.3.
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4.2.1. Programming model

The Claret programming model is not significantly different than traditional

key/value stores, especially for users of Redis [136]. Rather than just strings with

two available operations, put and get, records can have any of a number of different

types, each of which have operations associated with them. Each record has a type,

determined by a tag associated with its key so invalid operations are prevented on

the client. The particular client bindings employed are not essential to this work;

our code examples will use Python-like syntax similar to Redis’s Python bindings

though our actual implementation uses C++. An example of an ADT implementation

of the Bid transaction is shown in Figure 4.1.

Programmers express application-level semantics by choosing the most specific

ADT for their needs, either by choosing from the built-in ADTs (Table 4.1) or imple-

menting their own (see §4.4). In Figure 4.1, we saw that Bid transactions should com-

mute; we just need know the current high bid. Redis has a zset type representing a

sorted or ranked set: it associates a score with each item and allows elements to be re-

trieved by score. A topk set is a specialization of zset optimized to keep track of only

the highest-ranked items. A topk meets our needs for bids perfectly. Furthermore,

topk.add operations commute so Bid transactions no longer conflict.

4.2.2. Consistency model

Weak consistency models require programmers to understand and guard against

all potentially problematic interleavings. With Claret, programmers instead focus

on choosing ADTs that best represent their desired behavior, naturally exposing

opportunities for optimization. Individual operations in Claret are strictly lin-

earizable, committing atomically on the shard that owns the record. Each record,

including aggregate types, behaves as a single object living on one shard. Atomicity is

determined by the granularity of ADT operations. CustomADTs can allow arbitrarily

complex application logic to be atomic, provided they can be localized to a single

object, but in general, composing operations requires transactions.

4.2.3. Transaction model

Claret implements interactive distributed transactions with strict serializable isola-

tion, similar to Spanner [52], with standard begin, commit, and abort functions and

automatic retries. Claret supports general transactions: clients are free to perform any
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operations on any records within the scope of the transaction. It uses strict two-phase

locking, acquiring a lock for each record before accessing it during transaction ex-

ecution.

We support arbitrary ADT operations in transactions by splitting them into two

parts, execute and commit, which both run on the shard holding the record. Execute at-

tempts to acquire the lock for the record; when it succeeds, it executes the operation

read-only to compute a result. Operations without a return value do nothing after ac-

quiring the lock, simply returning control to the calling transaction. Once locks for all

operations in a transaction have been acquired, a commit is sent to each participating

shard to run the commit part of all the operations, performing any mutation on the

record and releasing the lock. Similar to Spanner [52], clients do not read their own

writes; due to the buffering of mutations, operations always observe the state prior to

the beginning of the transaction.

We chose a lock-based approach; we briefly explain in §4.3.1 how this approach

could similarly benefit optimistic concurrency control (OCC).

Claret does not require major application modifications to express concurrency.

From the clients’ view, there are no fundamental differences between using Redis and

Claret (except the addition of distributed transactions and custom types). Under the

hood, however, Claret will use its knowledge about ADTs to improve performance in

a number of ways that we describe next.

4.3. Leveraging data types

Abstract data types decouple their abstract behavior from their low-level concrete im-

plementation. Abstract operations can have properties such as commutativity, asso-

ciativity, or monotonicity, which define how they can be reordered or executed con-

currently, while the concrete implementation takes care of performing the necessary

synchronization. Knowledge of these properties can be used inmanyways to improve

performance. First, we show how commutativity can be used in the concurrency con-

trol system to avoid false conflicts (boosting) and ordering constraints (phasing). Then

we give an example of how associativity can be applied to reduce the load on the data-

store (combining).
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4.3.1. Transaction boosting

To ensure strong isolation, all transactional storage systems implement some form of

concurrency control. A common approach is strict two-phase-locking (S2PL), where a

transaction acquires locks on all records in the execution phase before performing any

irreversible changes. However, in distributed systems, holding locks is costly because

large round-trip latencies cause them to be held for long periods, depriving the sys-

tem ofmuch of its potential parallelism. Allowing operations to share locks is essential

to providing reasonable throughput and latency for transactions. Reader/writer locks

are commonly used to allow transactions reading the same record to execute concur-

rently, but they force transactions writing the record to wait for exclusive access.

Abstract locks [14, 47, 75, 139, 163] generalize reader-writer locks to any operations

that can logically run concurrently. When associated with an ADT, they allow opera-

tions that commute to hold the lock at the same time. For the topk set, add operations

can all hold the lock at the same time, but reading operations such as sizemust wait.

The same idea can be applied to OCC: operations only cause conflicts if the abstract

lock doesn’t allow them to execute concurrently with other outstanding operations.

Known as transaction boosting [74] in the transactional memory literature, using

abstract locks is evenmore important for distributed transactionswhich supportmas-

sively more parallelism but have much longer latencies. Abstract locks directly in-

crease the number of transactions which can execute concurrently. In OCC-based

systems, boosting can reduce the abort rate because fewer operations conflict with

one another.

Boosting is essential for highly contended records, such as bids on a popular auc-

tion as it is about to close. If all the bids are serialized because they are thought to

conflict, then fewer can complete and the final price could be lower. Using a topk set

whose add operations naturally commute allows more bids to complete.

4.3.2. Phasing

Sometimes the order that operations happen to arrive causes problems with abstract

locks. In particular, they only help if the operations that commute with each other

arrive together; poor interleaving can result in little effect.Phasing reorders operations

so that commuting operations execute together, similar to batching.

Each ADT defines a phaser that is responsible for grouping operations into phases

that execute together. The interface will be described in more detail in §4.4.1.2. Each
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record (or rather, the lock on the record), has its own phaser which keeps track of

which mode is currently executing and keeps queues of operations in other modes

waiting to acquire the lock. The phaser then cycles through these modes, switching

to the next when all the operations in a phase have committed. Abstract locks, which

have more distinct modes, benefit more than reader/writer locks, which must still

serialize all writes.

By reordering operations, phasing has an effect on fairness. Queueing on locks

improves fairness compared to our baseline retry strategy that can lead to starvation.

However, because phasing allows operations that commute to be executed before ear-

lier blocked operations, it can lead to fairness issues. If a record has a steady stream

of read operations, it may never release the lock to allow mutating operations. To

prevent this, we cap phases at a maximum duration whenever there are blocked op-

erations. In our experiments, we only observed this as an issue at extreme skew. The

latency of some operations may increase as they are forced to wait for their phase to

come. However, reducing conflicts often reduces the latency of transactions overall.

4.3.3. Combining

Associativity is another useful property of operations. If we consider commutativity,

used in boosting and phasing above, as allowing operations to be executed in a differ-

ent order on a record, then associativity allows us to merge operations together before

applying them to the record. This technique, combining [72, 142, 166], can drastically

reduce contention on shared data structures and improve performance whenever the

combined operation is cheaper than all the individual operations. As discussed in de-

tail in the Chapter 3, combining can be extremely useful in distributed environments,

effectively parallelizing synchronization for a single data structure over multiple ma-

chines.

For distributed datastores, where the network is typically the bottleneck, combin-

ing can reduce server load. If many clients wish to perform operations on one record,

each of them must send a message to acquire the lock. Even if they commute and so

can hold the lock concurrently, the server handling the requests can get overloaded.

In our model, however, “clients” are actually frontend servers handling many differ-

ent end-user requests. With combining enabled, Claret keeps track of all the locks

currently held by transactions on one frontend server. Whenever a client performs a

combinable operation, if it finds its lock already in the table, it simplymerges with the

operation that acquired the lock, without needing to contact the server again.
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For correctness, transactions sharing combined operations must all commit to-

gether. This also means that they must not conflict on any of their other locks, other-

wise they would deadlock, and this applies transitively through all combined opera-

tions. Claret handles this by merging the lock sets of the two transactions and abort-

ing a transaction and removing it from the set if it later performs an operation that

conflicts with the others.

Tracking outstanding locks and merging lock sets adds overhead but offloads

work to clients, which are easier to replicate to handle additional load than datastore

shards. In our evaluation (§4.5), we find that combining is most effective at those crit-

ical times of extreme contention when load is highly skewed toward one shard.

4.4. Expressing abstract behavior

As in any software design, building Claret applications involves choosing the right

data structures. There are many valid ways to compose ADTs to model application

data, but to achieve the best performance, one should express as much high-level ab-

stract behavior as possible through ADT operations.

Typically, the more specialized an ADT is, the more concurrency it can expose, so

finding the closestmatch is essential. For example, one could use a counter to generate

unique identifiers, but counters must return numbers in sequence, which is difficult

to scale (as implementers of TPC-C [156], which explicitly requires this, know well).

A special UniqueID type succinctly communicates that non-sequential IDs are accept-

able, allowing a commutative implementation.

Claret has a library of pre-defined ADTs (Table 4.1) used to implement the appli-

cations described in this chapter. Reusing existing ADTs saves implementation time

and effort, but may not always expose the maximum amount of concurrency. Custom

ADTs can express more complex application-specific properties, but the developer

is responsible for specifying the abstract behavior for Claret. The next sections will

show how ADT behavior is specified in Claret to expose abstract properties of ADTs

for our optimizations to leverage.

4.4.1. Commutativity Specification

Commutativity is not a property of an operation in isolation. A pair of operations com-

mute if executing them on their target record in either order will produce the same
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Data type Description

UIdGenerator Create unique identifiers (not necessarily sequential) (next)

Dict Map which allows setting or getting multiple fields atomically

ScoredSet Set with unique items ranked by a score (add, size, range)

TopK Like ScoredSet but keeps only highest-ranked items

(add, max, …)

SummaryBag Container where only summary statistics of items

can be retrieved (add, mean, max)

Table 4.1. Library of built-in data types.

Method: And: Commute when:

add(x): void add(y) ∀x,y

remove(x): void remove(y) ∀x,y

add(y) x ̸= y

size(): int add(x) x ∈ Set

remove(x) x ̸∈ Set

contains(x): bool add(y) x ̸= y∨ y ∈ Set

remove(y) x ̸= y∨ y ̸∈ Set

size() ∀x

Table 4.2. Abstract Commutativity Specification for Set.

outcome. Using the definitions from [95], whether or not a pair of method invoca-

tions commute is a function of the methods, their arguments, their return values, and

the abstract state of their target. We call the full set of commutativity rules for an ADT

its commutativity specification. An example specification for a Set is shown in Table 4.2.

However, we need something besides this declarative representation to communicate

this specification to Claret’s concurrency controller.
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class zset:

  class abstract_lock:

    # return True if `op` can execute on `record`

    # concurrently with other lock holders;

    # adds txn_id to set of lock holders

    def acquire(record, op, txn_id):

      if (op.is_add() and self.mode == ADD) or 

         (op.is_read() and self.mode == READ):

        self.holders.add(txn_id)

        return True

      # ...

    

    # called when a transaction commits or aborts,

    # releasing its locks, remove `txn_id` from

    # lock holders

    def release(txn_id):

      self.holders.remove(txn_id)

      if self.holders.empty():

        self.mode = None

Listing 4.1. Interface for expressing commutativity for a data type. Typical implementations

usemodes to easily determine sets of allowed operations, and a set of lock-holders to keep track

of outstanding operations.

4.4.1.1. Abstract lock interface

In Claret, each data type describes its commutativity by implementing the abstract lock

interface shown in Listing 4.1. This imperative interface allows data types to be arbi-

trarily introspectivewhendetermining commutativity. In our implementation, clients

must acquire locks for each operation before executing them. When the datastore re-

ceives a lock request for an operation on a record, the concurrency controller queries

the abstract lock associated with the record using its acquiremethod, which checks

the new operation against the other operations currently holding the lock to deter-

mine if it can execute concurrently (commutes) with all of them.

Implementations of this interface typically keep a set of the current lock-holders.

They determine which operations are currently permitted to share the lock by divid-

ing them into modes. For example, reader/writer locks have a read mode for all read-

only operations and an exclusivemode for the rest, while abstract locks have additional

modes, such as an appendmode for sets which allows all adds.More fine-grained track-

ing in acquire can expose more concurrency; for instance, contains can execute

during append if the item already exists.
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class zset:

  class phaser:

    def enqueue(self, op):

      if op.is_read():

        self.readers.push(op)

      elif op.is_add():

        self.adders.push(op)

      # ...

    

    def signal(self, prev_mode):

      if prev_mode == READ:

        self.adders.signal_all()

      elif prev_mode == ADD:

        self.readers.signal_all()

      # ...

Listing 4.2. Phaser interface (example implementation): enqueue is called after an operation

fails to acquire a lock, signal is called when a phase finishes (all ops in the phase commit and

release the lock).

4.4.1.2. Phaser interface

Phasing requires knowing how to divide operations into phases, similar to the modes

for locks, but rather than trackingwhich operations currently hold the lock, the phaser

associated with a record tracks all the operations waiting to acquire the lock. When

an operation fails to acquire the lock, the controller enqueues it with the phaser. When

a phase completes, the abstract lock signals the phaser, requesting operations for a

new phase.

The simplest implementations keep queues corresponding to each mode. List-

ing 4.2, for example, shows adders, which will contain all operations that may in-

sert into the set (just add), and readers, which includes any read-only operations

(size, contains, range, etc). As with abstract locks, more complicated phaser imple-

mentations can allow operations to be in multiple modes or use more complex state-

dependent logic to determine which operations to signal.

4.4.2. Combiners

Finally, ADTswishing to performcombining (§4.3.3)must implement a combiner to tell

Claret how to combine operations. Combiners only have onemethod, combine, which
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attempts to match the provided operation against any other outstanding operations

(operations that have acquired a lock but not committed yet).

Remember from §4.2 that operations are split into execute and commit. Combin-

ing is only concerned with the execute part of the operation. Operations that do not

return a value (such as add) are simple to combine: any commuting operations essen-

tially share the acquired lock and commit together. Operations that return a value in

execute (any read), can only be combined if they can share the result. For zset.size,

all concurrent transactions should read the same size, so combined size ops can all

return the size retrieved by the first one. The range operation on a zset is a more

complex example of sharing results: if one operation’s range is a subset of another,

the two can be combined, sharing the output of the larger range query.

To avoid excessive matching, only operations declared combinable are compared.

The client-side library keeps track of outstanding combinable operations with a map

of combiners indexed by key. Combiners are registered after a lock is acquired and re-

moved when the operation commits. Before sending an acquire request for a combin-

able operation, the client checks themap for that key. If none is found, or the combine

fails, it is sent to the server as usual. If it succeeds, the result is returned immediately,

and Claret handles merging the two transactions as described before in §4.3.3.

4.4.3. Adding a custom ADT

The ADTs provided by Claret are all implemented using these interfaces to communi-

cate their commutativity and associativity to Claret’s concurrency control system. To

implement a customADT that can take advantage of all of the optimizations, program-

mers must simply implement an abstract lock, phaser, and combiner. ADT designers

could choose to use simple implementations similar to those in Claret that just divide

operations statically into modes, or experts could use more state-dependent logic to

provide fine-grained concurrency if needed.

4.5. Evaluation

To understand the potential performance impact of the optimizations enabled by

ADTs, we built a prototype in-memory ADT-store in C++, dubbed Claret. Our design

follows the architecture previously described in Figure 4.2, with keys distributed

among shards by consistent hashing, though related keys may be co-located using

tags as in Redis. Records are kept in their in-memory representations, avoiding
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serialization. Clients are multi-threaded, to model frontend servers handling many

concurrent end-user requests, and use ethernet sockets and protocol buffers to

communicate with the data servers.

As discussed before, Claret uses two-phase locking (2PL) to isolate transactions.

The baseline uses reader/writer locks. When boosting is enabled, these are replaced

with abstract locks. By default, operations retry whenever they fail to acquire a lock;

with phasing, replies are sent whenever the lock is finally acquired, so retries are only

used to resolve deadlocks or lost packets.

Our prototype does not provide fault-tolerance or durability. These could be

implemented by replicating shards or logging to persistent storage. Synchronizing

with replicas or the filesystem should increase the time spent holding locks, so

lower throughput and higher latency are expected. Claret increases the number of

clients which can simultaneously hold locks, so adding fault tolerance would be

expected to reinforce our findings.

We wish to understand the impact our ADT optimizations have on throughput

and latency under various contention scenarios. First, we use a microbenchmark to

directly tune contention by varying operationmix and key distribution.We thenmove

on to explore scenarios modeling real-world contention in two benchmarks – Rubis:

an online auction service, and Retwis: a Twitter clone.

The following experiments are run on a Linux cluster running Ubuntu 15.10.

Each node has dual 6-core 2.5 GHz Intel Xeon E5-2680-v3 processors with 64 GB of

memory, connected by a 10Gb ethernet network. Experiments are run with 4 single-

threaded shards running on 4 different nodes, with 4 multithreaded clients on 4 sepa-

rate nodes. Average round-trip times between nodes for UDP packets are 35 µs, with

negligible packet loss.

4.5.1. Raw Operation Mix

This microbenchmark performs a random mix of operations, similar to YCSB or

YCSB+T [51, 55], that allows us to explicitly control the degree of contention. Each

transaction executes a fixed number of operations (4), randomly selecting either a

read operation (set.size), or a commutative write operation (set.add), and keys

selected randomly with a Zipfian distribution from a pool of 10,000 keys. By varying

the percentage of adds, we control the number of potential conflicting operations. Im-

portantly, adds commute with one another, but not with size, so even with boosting,

conflicts remain. The Zipf parameter, α , determines the shape of the distribution; a
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Figure 4.3. Raw mix workload (50% read, zipf: 0.6), increasing number of clients, plotted as

throughput vs. latency. Boosting (abstract locks) eliminates conflicts between adds, phasing

reorders operations more efficiently. Results in a 2.6x throughput improvement, 63% of the

performance without transactions.

value of 1 corresponds to Zipf’s Law, lower values are shallower and more uniform,

higher values more skewed. YCSB sets α near 1; we explore a range of parameters.

We start with a 50% read, 50% write workload and a modest zipfian parameter

of 0.6, and vary the number of clients. Figure 4.3 shows a throughput versus latency

plot with lines showing each condition as we vary the number of clients (from 8

to 384). The baseline, using traditional r/w locks, reaches peak throughput with

few clients before latencies spike; throughput suffers as additional clients create

more contention. Abstract locks (boosting) expose more concurrency, increasing peak

throughput. Adding phasing (dashed lines) improvements peak throughput because

it improves operation fairness while also improving the chances of commuting.

The dotted pink line in Figure 4.3 shows performance of the same workload

with operations executed independently, without transactions (though performance

is still measured in terms of the “transactions” of groups of 4 operations). These

operations execute immediately on the records in a linearizable [76] fashion without

locks. This serves as a reasonable upper bound on the throughput possible with our

servers. Claret’s transactions achieve 63% of that throughput on this workload.

Varying operation mix. Figure 4.4 shows throughput as we vary the percentage

of commutative write operations (add), with keys selected with a modest 0.6 zipfian

distribution. Boosting becomes more important as the fraction of commutative adds
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Figure 4.4. Peak throughput, varying operation mix. Boosting is increasingly important with a

higher fraction of adds. Phasing is essential for any mixed workload.

increases. Phasing has a significant impact for anymixedworkload, as it helps commu-

tative operations run concurrently; tracing the execution, we observed that records

regularly alternated between add and read phases. Combining shows a modest im-

provement for all workloads, even for read-only and write-only, because it occasion-

ally allows transactions to share locks (and the result of reads) without burdening the

server.

Varying key distribution. Figure 4.5 shows throughput with a 50/50 operation

mix, controlling contention by adjusting the zipfian skew parameter used to choose

keys. At low zipfian, the distribution is mostly uniform over the 10,000 keys, so most

operations are concurrent simply because they fall on different keys, andClaret shows

little benefit. As the distribution becomes more skewed, transactions contend on a

smaller set of popular records.With less inter-record concurrency, we rely on abstract

locks (boosting) to expose concurrency within records.

At high skew, there is a steady drop in performance simply due to serializing op-

erations on the few shards unlucky enough to hold the popular keys. However, skew

increases the chance of finding operations to combinewith, so combining is able to of-

fload significant load from the hot shards. Our implementation of combining requires

operations to be split into the acquire and commit phases, so it cannot be used with-

out transactions. Though distributions during normal execution are typically more
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Figure 4.5. Peak throughput, varying key distribution. Higher Zipf parameter results in greater

skew and contention; boosting and phasing together expose concurrency. At extreme skew,

combining reduces load on hot records, which our non-transactional mode cannot do.

moderate, extreme skewmodels the behavior during exceptional situations like Buzz-

Feed’s viral dress.

4.5.2. RUBiS

The RUBiS benchmark [10] imitates an online auction service like the one described

in §4.1.1. The 8 transaction types and their frequencies are shown in Table 4.3;

ViewAuction and Bid dominate the workload. The benchmark specifies a workload

consisting of a mix of these transactions and the average bids per auction. However,

the distribution of bids (by item and time) was unspecified.

Our implementation models the bid distributions observed by subsequent stud-

ies [5, 6], with bids per item following a power law and the frequency of bids increasing

exponentially at the end of an auction. Otherwise, we follow the parameters specified

in [10]: 30,000 items, divided into 62 regions and 40 categories, with an average of 10

bids per item, though in our case this is distributed according to a zipfian withα = 1.

Figure 4.7(a) shows results for twodifferentworkloads: read-heavy and bid-heavy.

In the read-heavy workload, bids do not often come in at a high enough rate to re-

quire commutativity, so phasing alone suffices. However, during heavy bidding times,

commutativity is essential: Claret maintains nearly the same throughput in this situ-
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ViewAuc(on

dict.get('Item:_', …)

topk.top('ItemBids:_', …)

OpenAuc(on

zset.add('Category:_', …)

dict.set('Item:_', …)

zset.add('Region:_', …)

CloseAuc(on

zset.remove('Category:_', …)

dict.get('Item:_', …)

zset.remove('Region:_', …)

topk.top('ItemBids:_', …)

Bid

topk.add('ItemBids:_', …)

set.add('UserBids:_', …)

BrowseItems

zset.range('Category:_', …)

zset.range('Region:_', …)

Eliminated by boos$ng

Moderated by phasing

Irrelevant due to dependencies

Figure 4.6. Overview of important Rubis transactions implemented with ADTs. Lines show

conflicts between operations, many of which are either eliminated due to commutativity by

boosting or mediated by phasing.

ation as the read-heavy workload, roughly 2x better than r/w locks and 68% of non-

transactional performance. Considering the importance of getting bids correct, this

seems an acceptable tradeoff. For comparison, we ran the same workload on Redis;

its peak throughput was 400k transactions per second, a little over 4x the throughput

of the Claret prototype. This is due to inefficiencies in the Claret’s sorted set imple-

mentation as well as worse cache behavior.

Figure 4.6 predicted which conflicts should be affected by boosting; in Figure 4.8

we validate those predictions by plotting the actual number of conflicts for the most

significant edges in the conflict graph. Using a log scale, it is apparent that boosting

all but eliminates Bid-Bid conflicts, but Bid-View conflicts have gone up; now that

there are more bids, the chances of conflicting with ViewAuction have increased. The

introduction of phasing and combining eliminate much of the remaining conflicts.

Overall, we can see that boosting and phasing are crucial to achieving reasonable

transaction performance in Rubis even during heavy bidding. If an auction service is

unable to keep up with the rate of bidding, it will result in a loss of revenue and a lack

of trust from users, so a system like Claret could prove invaluable to them.
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Figure 4.7. Application performance. For both applications, boosting makes little difference for

read-heavy workloads, but during times of heavier updating (bid-heavy, post-heavy), com-

mutativity is essential, achieving 2x higher peak throughput, and only 30% less than non-

transactional performance. Non-phasing results are elided due to exceptionally high failure

rates.
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Figure 4.8. Breakdown of conflicts between Rubis transactions (minor contributors omitted)

with 256 clients on bid-heavy workload (averaged). As predicted by Figure 4.6, boosting dras-

tically reduces Bid-Bid conflicts, and phasing drastically reduces the remaining conflicts.

4.5.3. Retwis

Retwis is a simplified Twitter clone designed originally for Redis [136]. Data struc-

tures such as lists and sets are used track each user’s followers and posts and keep
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RUBiS View/Browse Bid Open/Close Comment NewUser/ViewUser

bid-heavy 52% 45% 1% 1% 1%

read-heavy 82% 10% 4% 2% 2%

Retwis Timeline Repost Post Follow NewUser

bid-heavy 82% 8% 6% 3% <1%

read-heavy 91% 5% 2% 1% 1%

Table 4.3. Transaction mix for benchmark workloads.

a materialized up-to-date timeline for each user (as a zset). It is worth noting that

in our implementation, Post and Repost are each a single transaction, including ap-

pending to all followers’ timelines, but when viewing timelines, we load each post in

a separate transaction.

Retwis doesn’t specify aworkload, sowe simulate a realistic workload using a syn-

thetic graph with power-law degree distribution and a simple user model. We use the

Kronecker graph generator from the Graph 500 benchmark [69], which is designed

to produce the same power-law degree distributions found in natural graphs. These

experiments generate a graph with approximately 65,000 users and an average of 16

followers per user.

Our simple model of user behavior determines when and which posts to repost.

After each timeline action, we rank the posts by how many reposts they already have

and repost the most popular ones with probability determined by a geometric distri-

bution. The resulting distribution of reposts follows a power law, approximating the

viral propagation effects observed in real social networks.

Figure 4.7(b) shows throughput on two workloads, listed in Table 4.3. The read-

heavy workload models steady-state Twitter traffic, while the post-heavy workload

models periods of above-average posting, such as during live events. We only show

the results with phasing because the non-phasing baseline had too many failed trans-

actions. On the read-heavy workload, r/w locks are able to keep up reasonably well;

after all, reading timelines is easy as long as they do not change frequently. However,

the post-heavy workload shows that when contention increases, the performance of

r/w locks falls offmuchmore drastically thanwith boosting. Combining even appears

to pay off when there are enough clients to find matches.
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Unlike auctions, many situations in Twitter are tolerant of minor inconsistencies,

making it acceptable to implement without transactions in order to aid scalability.

This tradeoff is clear when performance is as flat as the baseline performance is in

these plots. However, with Claret’s optimizations, it is able to achieve up to 82% of the

non-transactional performance. In situations where inconsistent timelines are more

likely to be noticed, such as conversations, it may be worth paying this overhead.

4.5.4. Comparison with Redis

Claret’s programming model is very similar to that of Redis [136]. In order to help

calibrate Claret’s results, we implemented Rubis and Retwis in Redis (in C++, using

a wrapper over the C client bindings) and ran identical workloads. Redis does not

support distributed transactions, so we only compare with Claret with transactions

disabled to determine the raw performance difference between the two implemen-

tations. In our experiments, Redis achieved roughly 4x higher throughput, peaking

around 400k transactions per second for Rubis and Retwis, though this gap narrowed

to only a 20% difference for Retwis on the post-heavy workload.

This performance gap is due primarily to implementation details; nothing funda-

mental about Claret’s design is different. Redis is written inC and is heavily optimized

for high performance, employing aggressive tactics to prevent dynamic allocation, op-

timize locality, and speed up serialization. The majority of the difference in perfor-

mance between Claret and Redis appears to be in the implementation of the core data

structures like Claret’s ScoredSet (implemented with standard C++ STL data struc-

tures) compared with Redis’s zset implementation, with some additional overhead

in Claret’s Protobuf-based serialization.

We hypothesize that if Redis itself was extended with Claret’s boosting, com-

bining, and phasing optimizations, it would exhibit a similar performance pattern,

where distributed transactions would have a roughly 20-30% performance penalty.

This would be significantly better than Redis’s existing transaction support, which is

OCC-based and only works for a single Redis server. Our preliminary efforts to add

Claret’s abstract locks to Redis using its Lua scripting capability have shown promise.

Evaluation summary. We find that leveraging commutativity via boosting and

phasing is clearly beneficial under all of our simulated scenarios, showing greater

benefit under more extreme contention resulting from high skew or heavy writing.

Combining appears mostly ineffectual in our benchmarks, but does not hinder per-

formance. In the most dire circumstances of extreme contention, having combining
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as an optional release valve for offloading work is useful. Moreover, these improve-

ments come with a programming model largely identical to Redis’s, which is suffi-

cient for many applications that only require simple ADTs already built into Redis.

The Claret prototype system is not as highly optimized as Redis itself, roughly 4x

slower on read-heavy workloads and marginally slower on write-heavy workloads.

However, its performance is similar enough that our findings should be expected to

hold within Redis itself.

4.6. Related work

4.6.1. Improving transaction concurrency

Several recent systems have explored ways of exposing more concurrency between

transactions. An old technique, transaction chopping [141], statically analyzes trans-

actions and splits them to reduce the time locks are held for.

Recent systems Salt and Callas [164, 165] introduced ways of separating trans-

actions that often conflict from the rest so they can be handled differently. In Salt,

problematic transactions were rewritten to operate with weaker consistency, which

Callas improvedupon tomaintain the sameACIDproperties by using runtimepipelin-

ing within a group. Boosting and phasing could both be applied within one of these

groups along with runtime pipelining to expose concurrency among frequently con-

flicting transactions. It would be interesting to explore whether Claret’s ADT knowl-

edge could be used to inform Callas’s grouping decisions, which are crucial to per-

formance.

4.6.2. ADTs and commutativity

The importance of commutativity is well known in databases and distributed sys-

tems. ADTs were first used in databases in the 1980s to support indices for custom

data types [149, 150], and for concurrency control [61, 75, 139, 163]. That work intro-

duced abstract locks to allow databases to leverage commutativity and also allowed

user-defined types to express their abstract behavior to the database. Another classic

system [148] used type-based locks in an early form of distributed transactions.

To improve scalability and flexibility, NoSQL stores gave up the knowledge af-

forded by predefined schemas, but recent work has shown how these systems can still

leverage commutativity. Lynx [168] allows users to annotate parts of transactions as
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commutative. HyFlow [93] combines multi-versioning and commutativity to reorder

commutative transactions before others, but requires annotating entire transactions

as commutative. ADTs naturally express commutativity as part of application design

and abstract locks expose more fine-grained concurrency.

Doppel [115], a multicore in-memory database, allows commutative operations

on highly contended records to be performed in parallel phaseswith a technique called

phase reconciliation; Claret’s phasers are more general in that they expose pairwise op-

eration commutativity on arbitrary ADTs, but do not parallelize across cores.

In eventually consistent datastores, commutativity can improve convergence.

RedBlue consistency [100] exploits the convergence of commutative “blue” oper-

ations to avoid coordination. Conflict-free (or convergent) replicated data types

(CRDTs/CvRDTs) [140] force operations to commute by defining merge functions

that resolve conflicts automatically and have been implemented for production in

Riak [22]. Claret’s strictly linearizable model exposes concurrency without relaxing

consistency because CRDT behavior is often still counterintuitive.

4.7. Discussion

Claret mitigates contention in real-world workloads by allowing programmers to

expose application-level semantics with ADTs, which the datastore leverages in

the transaction protocol and client library. These optimizations lead to significant

speedups for transactions in high contention scenarios, without hurting performance

on lighter workloads, making them competitive with non-transactional performance.

In these experiments, we found that phasing was extremely important to perfor-

mance, to the point where non-phasing approaches often struggled to complete

even a handful of transactions in contentious situations, particularly the Retwis

workload. On the other hand, boosting and abstract locks were only beneficial

when many operations were commutative updates. However, we know that even

if most of the time, reads dominate workloads, due to the skewed, viral behavior

of real-world workloads, bursts of heavy writing can occur at unpredictable times.

Finally, though we demonstrated that combining can have significant benefit with

extreme skew, it did not appear to make a significant difference in our application

workloads; further exploration of real workloads may uncover situations where

combining is more beneficial.

The Claret prototype implementation is unfortunately somewhat slower than
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its closest production-level counterpart, Redis, due in part to a significantly less-

optimized implementation. We initially decided to implement Claret from scratch

rather than building on top of an existing datastore becausewe did not know then that

it would be possible to achieve compelling transaction performance without making

significant changes to the Redis client interface. Though purely an engineering effort,

applying Claret’s optimizations to Redis would provide an easier avenue for adoption

and better performance than the current prototype implementation.

We have seen that exposing already-existing concurrency between transactions

can drastically improve performance. However, there is a limit to the amount of true

concurrency that is available in these applications. For example, though retweets com-

mute with one another, if a Twitter user views the retweet count, that must be serial-

ized with respect to retweets. If the application could express where approximation

or inconsistency is acceptable, e.g., where it can tolerate an imprecise retweet count,

then even more concurrency would be available. The next chapter introduces a new

programming model that lets programmers express error tolerances, and uses types

to ensure that they deal with the ramifications.
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5. Disciplined Inconsistency
Safely trading off consistency for performance

5.1. Introduction

To provide good user experiences, modern datacenter applications and web services

must balance the competing requirements of application correctness and responsive-

ness. For example, a web store double-charging for purchases or keeping users wait-

ing too long (each additional millisecond of latency [64, 104]) can translate to a loss

in traffic and revenue. Worse, programmers must maintain this balance in an unpre-

dictable environment where a black and blue dress [119] or Justin Bieber [109] can

change application performance in the blink of an eye.

In order to meet these performance requirements, distributed systems program-

mersmust routinelymake tradeoffs between consistency andperformance [17, 34, 67].

Recognizing this, many existing storage systems support configurable consistency lev-

els that allow programmers to set the consistency of individual operations [11, 22, 100,

147]. These allow programmers to weaken consistency guarantees only for data that

is not critical to application correctness, retaining strong consistency for vital data.

Some systems further allow adaptable consistency levels at runtime, where guaran-

tees are only weakened when necessary to meet availability or performance require-

ments (e.g., during a spike in traffic or datacenter failure) [151, 153]. Unfortunately,

using these systems correctly is challenging. Programmers can inadvertently update

strongly consistent data in the storage system using values read from weakly consis-

tent operations, propagating inconsistency and corrupting stored data.Over time, this

undisciplined use of data from weakly consistent operations lowers the consistency of

the storage system to its weakest level.

This chapter proposes a more disciplined approach to inconsistency through the

Inconsistent, Performance-bound, Approximate (IPA) storage system. IPA introduces the

following concepts:

• Consistency Safety, a new property that ensures that values fromweakly consistent

operations cannot flow into stronger consistency operations without explicit en-
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dorsement from the programmer. IPA is the first storage system to provide con-

sistency safety.

• Consistency Types, a new type system in which type safety implies consistency safety.

Consistency types define the consistency and correctness of the returned value

from every storage operation, allowing programmers to reason about their use of

different consistency levels. IPA’s type checker enforces the disciplined use of IPA

consistency types statically at compile time.

• Error-bounded Consistency. IPA is a data structure store, like Redis [136] or Riak [22],

allowing it to provide a new type of weak consistency that places numeric error

bounds on the returned values. Within these bounds, IPA automatically adapts to

return the strongest IPA consistency type possible under the current load.

We implemented an IPA prototype based on Scala and Cassandra and show that IPA

allows the programmer to trade off performance and consistency, safe in the knowl-

edge that the type system has checked the program for consistency safety. We demon-

strate experimentally that these mechanisms allow applications to dynamically adapt

correctness and performance to changing conditions with three applications: a sim-

ple counter, a Twitter clone based on Retwis [137] and a Ticket sales service modeled

after FusionTicket [1].

5.2. Trading off consistency (in the past)

Before delving into what can go wrong with inconsistency, we must first introduce

the concepts behind replication and consistency, and describe some of the techniques

previously available to programmers for trading off consistency. Distributed systems

often employ data replication as away to improve availability and fault tolerance.With

multiple copies of data, some of them may be lost or corrupted, but the true original

data can still be recovered. However, this requires keeping these copies up to date

with each other. How these replicas are kept synchronized with each other, which

replicas clients are required to coordinatewith, andwhat order operationswill appear

to execute in, are all part of the consistency model.

5.2.1. The consistency model zoo

Consistency models are analogous to memory models from computer architecture;

they define the allowable reorderings and visibility of operations in a distributed sys-
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tem, but they differ in one crucial way: consistency models expose the existence of replica-

tion. Due to the reliability and speed of CPU cache hierarchies, memory models can

afford to assume that coherencewill enforce the illusion of one copy of memory. In dis-

tributed systems, where failure is a real possibility and synchronization is expensive,

it is often necessary to expose replication in the consistency model. This makes them

significantly more difficult to reason about— as if memorymodels were not complex

enough as it is — and has led to a minor Cambrian explosion of consistency models.

The strongest consistencymodel, strict serializability (roughly defined as Lamport’s

sequential consistency [97] combined with Herlihy’s linearizability5 [76]) guarantees that

operations appear to occur in a global serial order that all observers agree on and that

corresponds to real time. This, and any form of consistency that requires enforcing a

global total order is theoretically impossible to enforce with high availability due to the

possibility of network partitions (this is the essence of the CAP theorem [34, 67]). In

practice, strict serializability may not be wholly impractical for the average case, but

ensuring it in all cases is prohibitively expensive.

At the other extreme, eventual consistency, the least common denominator among

consistency models, simply guarantees that if update operations stop occurring, all

replicas will eventually reflect the same state [159]. Under this model, programmers

cannot count on subsequent operations reflecting the same state, because those opera-

tions could go to any replica at any time, and those replicas are continuously receiving

updates from other nodes.

There are a whole family of models similar to eventual consistency which add

various ordering constraints:

• Monotonic writes (MW) ensure that writes from a client are serialized, enforcing

ordering between writes.

• Monotonic reads (MR) ensures that reads will not observe earlier values than have

been seen by a particular client already, strengthening visibility.

• Read-your-writes (RYW) ensures that a client will at least observe its own effects,

primarily strengthening one aspect of visibility.

• Causal consistency6 ensures that operations from different clients causally follow-

ing a write will observe that write (by some definition of causation which the sys-

5Not to be confused with lionizable (fictional), which would definitely be the king of the zoo.

6Inattentive or lazy typing can lead to the variant, casual consistency, inadvertently favored by some
datastores which shall remain nameless.
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temmust track). This means that operations will be visible to and ordered with each

other when applicable.

Each of the above models restricts ordering and visibility differently, making some

cases easier for programmers to reason about, while reducing the flexibility and there-

fore performance of the system. For instance, some require sticky sessions [152], which

forces clients to continue communicating with a particular replica, even if it is not

the fastest, or lowest latency, or most up-to-date one available. Alternately, the Conit

consistency model [167] breaks down the consistency spectrum into numerical error,

order error, and staleness, permitting a combinatorial number of variants.

Several datastores allow consistency levels to be specified on a per-operation ba-

sis: research systems Gemini [100] (RedBlue consistency), and Walter [147], and pro-

duction systems Cassandra [11] and Riak [22]. However, they leave programmers to

determine where to use stronger consistency in order to achieve their correctness

goals, a very error-prone task. Recent work has explored ways of automatically choos-

ing the correct consistency level or coordination strategy based on annotations.

5.2.2. Annotating ordering constraints

Rather than choosing consistency levels manually, some programming models have

been proposed that allow applications to specify their desired ordering constraints

in better ways.

Sieve [101] builds on top of Gemini, automatically determining how to imple-

ment the desired semantics with causal consistency and adding additional synchro-

nization wherever strong consistency is needed. It relies on programmer-specified

global invariants and annotations on the relational database schema to select the de-

sired merge semantics in case of conflicts. These annotations echo the variants of

CRDTs (see §5.2.4).

Quelea [145] has programmers write contracts to describe ordering constraints

between operations and then automatically selects the correct consistency level for

each operation to satisfy all of the contracts. Contracts are specified in terms of low-

level consistency primitives such as visibility and session order. For example, to ensure a

non-negative bank account balance, a contract indicates that all withdraw operations

must be visible to one another, forcing the operation to be executed with sequential

consistency. Because correctness properties are specified independent of a particular

consistency model, or set of consistency levels, they are composable with each other and

portable to other datastores supporting different consistency options. However, the
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Quelea:

∀(" : sellTicket). " = η ∨ vis(", η) ∨ vis(η, ")

@AddRemoveSet CREATE TABLE MovieTable (

  PRIMARY KEY (movie_id),

  @TrackDeltas tickets_remaining INT,

  ...

) ENGINE=InnoDB

Sieve:

Schema annota+ons & global invariants

Visibility annota+ons

Indigo:
Global invariants, post-condi+on annota+ons

@Invariant("forall(Movie : m) :- tickets(m) >= 0")

public interface MovieTickets {

  @PostCondition_Decrements("tickets(m, 1)")

  void sellTicket(Movie m);

}

forall(m in MovieTable) :- m.tickets >= 0

sameobj(", η) 

forces strong consistency

(overly conserva1ve)

Figure 5.1. Annotating application invariants. Annotations are used to determine where coordi-

nation is necessary and what consistency is required to enforce it.

low-level primitives used in contracts may not be intuitive for programmers and still

require reasoning about all the possible anomalies between operations. These primi-

tives are unable to capture other forms of coordination, sometimes leading to more

conservative ordering constraints than necessary.

Indigo [19] takes a different approach to expressing application requirements: in-

stead of specifying visibility and ordering constraints, programmers write invariants

over abstract state and state transitions, and annotate post-conditions on actions to express

their side-effects in terms of the abstract state. They then perform a static analysis to

determine where concurrent execution could violate the invariants and add coordina-

tion logic to avoid those conflicts. Supported constraints include numeric constraints,

such as lower or upper bounds on counts, as well as integrity constraints and general

compositions of these.

Figure 5.1 shows how annotations would be written in these three systems to im-

plement our running ticket sales example. In this case, the desired invariant is that tick-

ets are not over-sold – that is, the count of remaining tickets should be non-negative.

Sieve and Indigo can enforce this invariant directly as written. Quelea’s visibility-

based contracts cannot tightly describe this invariant; instead, they must be conser-

vative and force ticket sales to be strongly consistent. These approaches provide some

ways to express the orderings required by the application and let the system enforce
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them. However, these assume that everything in applications needs to always be cor-

rect, and do not take performance needs into consideration.

5.2.3. Expressing performance targets

A long history of systems have been built around the principle that applications may

be willing to tolerate slightly stale data in exchange for improved performance, in-

cluding databases [27, 125, 128, 132] and distributed caches [121, 126]. These systems

generally require developers to explicitly specify staleness bounds on each transaction

in terms of absolute time (although Bernstein et al.’s model can generate these from

error bounds when a value’s maximum rate of change is known). Other systems, in-

cluding PRACTI [24], PADS [25], and WheelFS [151], have given developers ways of

expressing their desired performance and correctness requirements through semantic

cues and policies.

One system of particular interest, called Pileus, supports consistency-based service-

level agreements (SLAs) [153]. Consistency SLAs specify a target latency and consistency

level (e.g. 100 ms with read-my-writes). Each operation specifies a set of desired SLAs

associated with relative utility scores. The runtime monitors the performance of the

system, predicts which SLAs are likely to be met, and chooses which to attempt in or-

der to maximize utility. By monitoring current performance, Pileus attempts to pre-

dict which SLA to target to maximize utility, typically to achieve the best consistency

possible within a certain latency. It then returns both the value and the achieved con-

sistency to the application, which they can choose to take into account when using

the value. Allowing users to specify their desired latencies and consistencies directly

to the system is powerful. However, because it is so fine-grained, the burden of choos-

ing target latencies and consistency for each operation could be quite high, and it is

difficult to compose a sequence of operations and SLAs to achieve an overall target

latency or correctness criteria.

5.2.4. Restricting value uncertainty

Convergent (or conflict-free) replicated data types (CRDTs) [140] are data types that have

commutative merge functions defined for them. Resolving conflicts deterministically

requires making choices about the semantics of concurrent updates, leading to a pro-

liferation of CRDTs for various use cases. Even simple data structures like Sets have

multiple variants that resolve non-commuting operations differently, e.g., a “grow-
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only set” (G-Set) where remove is simply disallowed, or an “observed-remove set” (OR-

Set) where add wins over remove when causally concurrent.

CRDTs are essential for handling concurrent updates to data structures; without

them it is very difficult to predict the final state of eventually consistent data. Riak [22]

implements several data types and encourages their use. Like ADTs, CRDTs also pro-

vide a well-defined set of possible values that a variable can hold, restricted to changes

made by supported operations. This is a clear advantage over simple registers that are

completely overwritten on each write, making them unpredictable when the order of

updates is uncertain. CRDTs can still suffer from many of the effects of eventual con-

sistency, such as temporary divergence when accessing different replicas, and there is

still no guarantee of timeliness of update propagation, so they could stay divergent

for some time.

Bloom [8, 50] is a language and programming paradigm that can be viewed as a

generalization of CRDTs. The CALM principle (Consistency And Logical Monotonic-

ity) underlying this work formalized the requirements for an entire program to be

eventually consistent, obviating any need for coordination. It is built around the no-

tion of monotonicity — programs compute sets of facts that grow over time so that

information is never lost and convergence can be guaranteed. In practice, some coor-

dination is needed to allow sequential reasoning in places, which the Bloom language

can determine automatically. These facts can be encoded as sets or other collections

with suitable merge functions, such as CRDTs.

Thesemodels can help programmers stay sane in the dangerous realm of eventual

consistency. However, they cannot completely replace the benefits of strong consis-

tency and linearizability. Interleaving eventually consistent CRDTswith strongly con-

sistent operations can still lead to confusing inconsistencies and integrity constraint

violations. The next section describes some situations where this can be problematic,

motivating the need for safer ways to compose consistency models.

5.3. The case for consistency safety

Unpredictable Internet traffic and unexpected failures forcemodern datacenter appli-

cations to trade off consistency for performance. In this section, we demonstrate the

pitfalls of doing so in an undisciplinedway. As an example, we describe amovie ticket-

ing service, similar to AMC or Fandango. Because ticketing services process financial

transactions, they must ensure correctness, which they can do by storing data in a
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Showings

! Grand Theater

Star Wars 7pm
Remaining:

STAR WARS 7pm

5

Purchase"Star Wars 9pm

Spectre 6:30pm

// adjust price based on number of tickets left

def computePrice(ticketsRemaining: Int): Float

// called from purchaseTicket & displayEvent

def getTicketCount(event: UUID): Int =

  // use weak consistency for performance

  readWeak(event+"ticket_count")

def purchaseTicket(event: UUID) = {

  val ticket = reserveTicket(event)

  val remaining = getTicketCount(event)

  // compute price based on inconsistent read

  val price = computePrice(remaining)

  display("Enter payment info. Price: ", price)

}

STAR WARS 7pm

Enter payment info.

Price: $15

Figure 5.2. Ticket sales service. To meet a performance target in displayEvent, developer

switches to a weak read for getTicketCount, not realizing that this inconsistent read will be

used elsewhere to compute the ticket price.

strongly consistent storage system. Unfortunately, providing strong consistency for

every storage operation can cause the storage system and application to collapse un-

der high load, as several ticketing services did in October 2015, when tickets became

available for the new Star Wars movie [53].

To allow the application to scale more gracefully and handle traffic spikes, the

programmer may chose to weaken the consistency of some operations. As shown

in Figure 5.2, the ticket application displays each showing of the movie along with the

number of tickets remaining. For better performance, the programmer may want to

weaken the consistency of the read operation that fetches the remaining ticket count

to give users an estimate, instead of the most up-to-date value. Under normal load,

even with weak consistency, this count would often still be correct because propaga-

tion is typically fast compared to updates. However, eventual consistency makes no

guarantees, so under heavier traffic spikes, the values could be significantly incorrect

and the application has no way of knowing by how much.

While this solves the programmer’s performance problem, it introduces a data
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consistency problem. Suppose that, like Uber’s surge pricing, the ticket sales applica-

tion wants to raise the price of the last 100 tickets for each showing to $15. If the

application uses a strongly consistent read to fetch the remaining ticket count, then it

can use that value to compute the price of the ticket on the last screen in Figure 5.2.

However, if the programmer reuses getTicketCount, which used a weak read to cal-

culate the price, then this count could be arbitrarilywrong. The application could then

over- or under-charge some users depending on the consistency of the returned value.

Worse, the theater expects tomake $1500 for those ticketswith the newpricingmodel,

whichmay not happenwith the newweaker read operation. Thus, programmers need

to be careful in their use of values returned from storage operations with weak con-

sistency. Simply weakening the consistency of an operation may lead to unexpected

consequences for the programmer (e.g., the theater not selling as many tickets at the

higher surge price as expected).

In this work, we propose a programming model that can prevent using inconsis-

tent values where they were not intended, as well as introduce mechanisms that allow

the storage system to dynamically adapt consistency within predetermined perfor-

mance and correctness bounds.

5.4. IPA programming model

We propose a programming model for distributed data that uses types to control the

consistency–performance trade-off. The Inconsistent, Performance-bound, Approximate

(IPA) type system helps developers trade consistency for performance in a disci-

plined manner. This section presents the IPA programming model, including the

available consistency policies and the semantics of operations performed under the

policies. §5.5 will explain how the type system’s guarantees are enforced.

5.4.1. Overview

The IPA programming model consists of three parts:

• Abstract data types (ADTs) implement common data structures (such as Set[T])

on distributed storage.

• Consistency policies on ADTs specify the desired consistency level for an object

in application-specific terms (such as latency or accuracy bounds).
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ADTMethod \ Policies: Consistency(Weak) LatencyBound(_) ErrorTolerance(_)

Counter.read() Inconsistent[Int] Rushed[Int] Interval[Int]

Set.size() Inconsistent[Int] Rushed[Int] Interval[Int]

Set.contains(x) Inconsistent[Bool] Rushed[Bool] N/A

List[T].range(x,y) Inconsistent[List[T]] ]‘ Rushed[List[T]] N/A

UUIDPool.take() Inconsistent[UUID] Rushed[UUID] N/A

UUIDPool.remain() Inconsistent[Int] Rushed[Int] Interval[Int]

Table 5.1. Consistency policies determine the consistency type returned by ADT operations.

• Consistency types track the consistency of operation results and enforce consis-

tency safety by requiring developers to consider weak outcomes.

Programmmers annotate ADTswith consistency policies to choose their desired level

of consistency. The consistency policy on the ADT operation determines the consistency

type of the result. Table 5.1 shows some examples; the next few sections will intro-

duce each of the policies and types in detail. Together, these three components pro-

vide two key benefits for developers. First, the IPA type system enforces consistency

safety, tracking the consistency level of each result and preventing inconsistent val-

ues from flowing into consistent values. Second, the programming interface enables

performance–correctness trade-offs, because consistency policies on ADTs allow the

runtime to select a consistency level for each individual operation thatmaximizes per-

formance in a constantly changing environment. Together, these systems allow appli-

cations to adapt to changing conditions with the assurance that the programmer has

expressed how it should handle varying consistency.

5.4.2. Abstract Data Types

The base of the IPA type system is a set of abstract data types (ADTs) for distributed

data structures. ADTs present a clear abstract model through a set of operations that

query and update state, allowing users and systems alike to reason about their logi-

cal, algebraic properties rather than the low-level operations used to implement them.

Though the simplest key-value stores only support primitive types like strings for val-

ues, many popular datastores have built-in support for more complex data structures

such as sets, lists, and maps. However, the interface to these datatypes differs: from
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explicit sets of operations for each type in Redis, Riak, and Hyperdex [22, 58, 86, 136]

to the pseudo-relational model of Cassandra [96]. IPA’s extensible library of ADTs al-

lows it to decouple the semantics of the type system from any particular datastore,

though our reference implementation is on top of Cassandra, similar to [145].

Besides abstracting over storage systems, ADTs are an ideal place from which to

reason about consistency and system-level optimizations. The consistency of a read

depends on thewrite that produced the value. AnnotatingADTswith consistency poli-

cies ensures the necessary guarantees for all operations are enforced, which we will

expand on in the next section.

Custom ADTs can express application-level correctness constraints. IPA’s

Counter ADT allows reading the current value as well as increment and decrement

operations. In our ticket sales example, we must ensure that the ticket count does not

go below zero. Rather than forcing all operations on the datatype to be linearizable,

this application-level invariant can be expressed with a more specialized ADT, such

as a BoundedCounter, giving the implementation more latitude for enforcing it. IPA’s

library is extensible, allowing custom ADTs to build on common features; see §5.6.3.

5.4.3. Consistency Policies

Previous systems [11, 22, 100, 147, 153] require annotating each read and write op-

eration with a desired consistency level. This per-operation approach complicates

reasoning about the safety of code using weak consistency, and hinders global opti-

mizations that can be applied if the system knows the consistency level required for

future operations. The IPA programmingmodel provides a set of consistency policies

that can be placed on ADT instances to specify consistency properties for the lifetime

of the object.

Consistency policies come in two flavors: static and dynamic.

Static policies are fixed, such as Consistency(Strong) which states that opera-

tions must have strongly consistent behavior. Static annotations provide the same

direct control as previous approaches but simplify reasoning about correctness by

applying them globally on the ADT.

Dynamic policies specify a consistency level in terms of application requirements,

allowing the system to decide at runtime how to meet the requirement for each exe-

cuted operation. IPA offers two dynamic consistency policies:

• A latency policy LatencyBound(x) specifies a target latency for operations on the

ADT (e.g., 20 ms). The runtime can choose the consistency level for each issued
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operation, optimizing for the strongest level that is likely to satisfy the latency

bound.

• An accuracy policy ErrorTolerance(x%) specifies the desired accuracy for read

operations on the ADT. For example, the size of a Set ADT may only need to be

accurate within 5% tolerance. The runtime can optimize the consistency of write

operations so that reads are guaranteed to meet this bound.

Dynamic policies allow the runtime to extract more performance from an application

by relaxing the consistency of individual operations, safe in the knowledge that the

IPA type system will enforce safety by requiring the developer to consider the effects

of weak operations.

Static and dynamic policies can apply to an entire ADT instance or on individual

methods. For example, one could declare List[Int] with LatencyBound(50 ms),

in which case all read operations on the list are subject to the bound. Alternatively,

one may wish to declare a Set with relaxed consistency for its size but strong con-

sistency for its contains predicate. The runtime is responsible for managing the in-

teraction between these policies. In the case of a conflict between two bounds, the

system can be conservative and choose stronger policies than specified without af-

fecting correctness.

In the ticket sales application, the Counter for each event’s tickets could have a re-

laxed accuracy policy, ErrorTolerance(5%), allowing the system to quickly read the

count of tickets remaining. An accuracy policy is appropriate here because it expresses

a domain requirement—userswant to see accurate ticket counts. As long as the system

meets this requirement, it is free to relax consistency andmaximize performancewith-

out violating correctness. The List ADT used for events has a latency policy that also

expresses a domain requirement—that pages on the website load in reasonable time.

5.4.4. Consistency Types

The key to consistency safety in IPA is the consistency types—enforcing type safety

directly enforces consistency safety. Read operations of ADTs annotated with consis-

tency policies return instances of a consistency type. These consistency types track the

consistency of the results and enforce a fundamental non-interference property: re-

sults fromweakly consistent operations cannot flow into computations with stronger

consistency without explicit endorsement. This could be enforced dynamically, as in

dynamic information flow control systems, but the static guarantees of a type system

allow errors to be caught at compile time.
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Rushed[T]

⊤ := Consistent[T]

⊥ := Inconsistent[T]

LocalQuorum[T]Interval[T] ...

Datastore-specific

consistency levels

Causal[T]

Dynamic consistency types

Figure 5.3. IPA Type Lattice parameterized by a type T.

The consistency types encapsulate information about the consistency achieved

when reading a value. Formally, the consistency types form a lattice parameterized

by a primitive type T, shown in Figure 5.3. Strong read operations return values of

type Consistent[T] (the top element), and so (by implicit cast) behave as any other

instance of type T. Intuitively, this equivalence is because the results of strong reads are

known to be consistent, which corresponds to the control flow in conventional (non-

distributed) applications. Weaker read operations return values of some type lower in

the lattice (weak consistency types), reflecting their possible inconsistency. The bottom

element Inconsistent[T] specifies an object with theweakest possible (or unknown)

consistency. The other consistency types are partially ordered as shown in Figure 5.3,

according to the subtyping relation ≺ defined by:

τ is weaker than τ ′

τ ′[T]≺ τ[T]

The only possible operation on Inconsistent[T] is to endorse it. Endorsement is an

upcast, invoked by endorse(x), to the top element Consistent[T] from other types

in the lattice:

Γ ⊢ e1 : τ[T] T ≺ τ[T]

Γ ⊢ endorse(e1) : T

The core type system statically enforces safety by preventingweaker values from flow-

ing into stronger computations. Forcing developers to explicitly endorse inconsistent

values prevents them from accidentally using inconsistent data where they did not de-

termine it was acceptable, essentially inverting the behavior of current systems where

inconsistent data is always treated as if it was safe to use anywhere. However, endors-

ing values blindly in this way is not the intended use case; the key productivity benefit
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of the IPA type system comes from the other consistency types which correspond to

the dynamic consistency policies in §5.4.3 which allow developers to handle dynamic

variations in consistency, which we describe next.

5.4.5. Rushed types

The weak consistency type Rushed[T] is the result of read operations performed

on an ADT with consistency policy LatencyBound(x). Rushed[T] is a sum (or

union) type, with one variant per consistency level available to the implementation

of LatencyBound. Each variant is itself a consistency type (though the variants

obviously cannot be Rushed[T] itself). The effect is that values returned by a

latency-bound object carry with them their actual consistency level. A result of type

Rushed[T] therefore requires the developer to consider the possible consistency

levels of the value.

For example, a system with geo-distributed replicas may only be able to satisfy

a latency bound of 50 ms with a local quorum read (that is, a quorum of replicas

within a single datacenter). In this case, Rushed[T] would be the sum of three types

Consistent[T], LocalQuorum[T], and Inconsistent[T]. Amatch statement destruc-

tures the result of a latency-bound read operation:

set.contains() match {

case Consistent(x) => print(x)

case LocalQuorum(x) => print(x+", locally")

case Inconsistent(x) => print(x+"???")

}

The application may want to react differently to a local quorum as opposed to a

strongly or weakly consistent value. Note that because of the subtyping relation on

consistency types, omitted cases can be matched by any type lower in the lattice,

including the bottom element Inconsistent(x); other cases therefore need only be

added if the application should respond differently to them. This subtyping behavior

allows applications to be portable between systems supporting different forms of

consistency (of which there are many).

5.4.6. Interval types

Tagging values with a consistency level is useful because it helps programmers tell

which operation reorderings are possible (e.g. strongly consistent operations will be
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observed to happen in program order). However, accuracy policies provide a differ-

ent way of dealing with inconsistency by expressing it in terms of value uncertainty.

They require knowing the abstract behavior of operations in order to determine the

change in abstract state which results from each reordered operation (e.g., reordering

increments on a Counter has a known effect on the value of reads).

The weak consistency type Interval[T] is the result of operations performed on

an ADT with consistency policy ErrorTolerance(x%). Interval[T] represents an

interval of values within which the true (strongly consistent) result lies. The interval

reflects uncertainty in the true value created by relaxed consistency, in the same style

as work on approximate computing [31].

The key invariant of the Interval type is that the interval must include the result

of some linearizable execution. Consider a Set with 100 elements. With linearizabil-

ity, if we add a new element and then read the size (or if this ordering is otherwise

implied), wemust get 101 (provided no other updates are occurring). However, if size

is annotatedwith ErrorTolerance(5%), then it could return any interval that includes

101, such as [95,105] or [100,107], so the client cannot tell if the recent add was in-

cluded in the size. This frees the system to optimize to improve performance, such

as by delaying synchronization. While any partially-ordered domain could be repre-

sented as an interval (e.g., a Set with partial knowledge of its members), in this work

we consider only numeric types.

In the ticket sales example, the counter ADT’s accuracy policy means that reads

of the number of tickets return an Interval[Int]. If the entire interval is above zero,

then users can be assured that there are sufficient tickets remaining. In fact, because

the interval could represent many possible linearizable executions, in the absence of

other user actions, a subsequent purchase must succeed. On the other hand, if the

interval overlapswith zero, then there is a chance that tickets could already be sold out,

so users could bewarned.Note that ensuring that tickets are not over-sold is a separate

concern requiring a different form of enforcement, which we describe in §5.6.3. The

relaxed consistency of the interval type allows the system to optimize performance

in the common case where there are many tickets available, and dynamically adapt to

contention when the ticket count diminishes.

5.4.7. Lower bounds

Weak consistency types enforce consistency safety by ensuring developers address

the worst case results of weak consistency. However, the weak consistency types are
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lower bounds on weakness: one valid implementation of a system using IPA types is to

always return strongly consistency values. Moreover, the runtime guarantees that if

every value returned has strong consistency, then the execution is linearizable, as if

the system were strongly consistent from the outset.

5.5. Enforcing consistency policies

The consistency policies introduced in the previous section allow programmers to de-

scribe application-level correctness properties. Static consistency policies (e.g. Strong)

are enforced by the underlying storage system; the annotatedADTmethods simply set

the desired consistency level when issuing requests to the store. The dynamic policies

each require a new runtime mechanism to enforce them: parallel operations with la-

tency monitoring for latency bounds, and reusable reservations for error tolerance.

But first, we briefly review consistency in Dynamo-style replicated systems.

To be sure of seeing a particular write, strong reads must coordinate with a major-

ity (quorum) of replicas and compare their responses. For a write and read pair to be

strongly consistent (in theCAP sense [34]), the replicas acknowledging thewrite (W) plus

the replicas contacted for the read (R) must be greater than the total number of replicas

(W+R > N). This can be achieved, for example, by writing to a quorum ((N+ 1)/2)

and reading from a quorum (QUORUM in Cassandra), or writing to N (ALL) and read-

ing from 1 (ONE) [54]. To support the Consistency(Strong) policy, the designer of

each ADT must choose consistency levels for its operations which together enforce

strong consistency.

5.5.1. Latency bounds

The time it takes to achieve a particular level of consistency depends on current con-

ditions and can vary over large time scales (minutes or hours) but can also vary signif-

icantly for individual operations. During normal operation, strong consistency may

have acceptable performance while at peak traffic times the application would fall

over. Latency bounds specified by the application allow the system to dynamically ad-

just to maintain comparable performance under varying conditions.

Our implementation of latency-bound types takes a generic approach: it issues

read requests at different consistency levels in parallel. It composes the parallel oper-

ations and returns a result either when the strongest operation returns, or with the
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strongest available result at the specified time limit. If no responses are available at

the time limit, it waits for the first to return.

This approach makes no assumptions about the implementation of read opera-

tions, making it easily adaptable to different storage systems. Some designs may per-

mit more efficient implementations: for example, in a Dynamo-style storage system

we could send read requests to all replicas, then compute the most consistent result

from all responses received within the latency limit. However, this requires deeper

access to the storage system implementation than is traditionally available.

5.5.1.1. Monitors

Themainproblemwith our approach is that itwastesworkby issuing parallel requests.

Furthermore, if the system is responding slower due to a sudden surge in traffic, then

it is essential that our efforts not cause additional burden on the system. In these cases,

we should back off and only attempt weaker consistency. To do this, the system mon-

itors current traffic and predicts the latency of different consistency levels.

Each client in the system has its ownMonitor (though multi-threaded clients can

share one). The monitor records the observed latencies of reads, grouped by opera-

tion and consistency level. The monitor uses an exponentially decaying reservoir to

compute running percentiles weighted toward recent measurements, ensuring that

its predictions continually adjust to current conditions.

Whenever a latency-bound operation is issued, it queries the monitor to deter-

mine the strongest consistency likely to be achieved within the time bound, then is-

sues one request at that consistency level and a backup at the weakest level, or only

weak if none can meet the bound. In §5.7.2.1 we show empirically that even simple

monitors allow clients to adapt to changing conditions.

5.5.2. Error bounds

Enforcement of error bounds is built on the concepts of escrow and reservations [66, 122,

127, 130]. These techniques have been used in storage systems to enforce hard limits,

such as an account balance never going negative, while permitting concurrency. The

idea is to set aside a pool of permissions to perform certain update operations (we’ll

call them reservations or tokens), essentially treating operations as amanageable resource.

If we have a counter that should never go below zero, there could be a number of decre-

ment tokens equal to the current value of the counter. When a client wishes to decre-

ment, it must first acquire sufficient tokens before performing the update operation,
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whereas increments produce new tokens. The insight is that the coordination needed

to ensure that there are never too many tokens can be done off the critical path: tokens

can be produced lazily if there are enough around already, and most importantly for

this work, they can be distributed among replicas. Thismeans that replicas can perform

some update operations safely without coordinating with any other replicas.

5.5.2.1. Reservation Server

Reservations require mediating requests to the datastore to prevent updates from ex-

ceeding the available tokens. Furthermore, each server must locally know how many

tokens it has without synchronizing. We are not aware of a commercial datastore that

supports custom mediation of requests and replica-local state, so we need a custom

middleware layer to handle reservation requests, similar to other systems which have

built stronger guarantees on top of existing datastores [18, 20, 145].

Any client requests requiring reservations are routed to one of a number of reser-

vation servers. These servers then forward operations when permitted along to the un-

derlying datastore. All persistent data is kept in the backing store; these reservation

servers keep only transient state tracking available reservations. The number of reser-

vation servers can theoretically be decoupled from the number of datastore replicas;

our implementation simply colocates a reservation server with each datastore server

and uses the datastore’s node discovery mechanisms to route requests to reservation

servers on the same host.

5.5.2.2. Enforcing error bounds

Reservations have been used previously to enforce hard global invariants in the form

of upper or lower bounds on values [20], integrity constraints [19], or logical asser-

tions [105]. However, enforcing error tolerance bounds presents a new design chal-

lenge because the bounds are constantly shifting. Consider a Counter with a 10% er-

ror bound, shown in Figure 5.4. If the current value is 100, then 10 increments can

be done before synchronization is required. However, we have 2 reservation servers,

so these 10 reservations are distributed among them, allowing each to do some incre-

ments without synchronizing. As long as only 10 outstanding increments are allowed

anywhere, reads are guaranteed to see values within 10% of the correct value.

If there are no tokens available locally, update operations like increment must

block until tokens become available. Once replicas have synchronized updates with

each other, the consumed tokens get returned to the reservation servers. In practice,
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
Replica 1


Replica 2

incr(1)

incr(1)

Counter with ErrorTolerance(10%)

read() = 

localTokens: 5/5

totalTokens: 10

100
100

R1: 5

R2: 5
allocated:

maxAlloc: 10

Reserva0on Server 2

localTokens: 3/5

totalTokens: 10

Reserva0on Server 1

Interval[Int](100..105)
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C

A
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Figure 5.4. Enforcing error bounds on a Counter: (A) Each replica has some number of tokens

allocated to it, must add up to less than the max (in this case, 10% of the current value). (B)

Reservation Server 1 has sufficient tokens available, so both increments consume a token and

proceed toReplica 1. (C) Reads return the range of possible values, determined by total number

of allocated tokens; in this case, it reads the value 100, knows that there are 10 tokens total, but

5 of them (local to RS2) are unused, so it returns 100..105. (D) Eventually,when the increments

have propagated, reservation server reclaims its tokens.

usually the reservation servers force a synchronization — in Cassandra this can be

done with a strong read (ALL) which performs read repair — ensuring that all replicas

agree before allowing more updates.

Read operations for error-bounded ADTs must also be routed through reserva-

tion servers: the server does a weak read from any replica, then determines the inter-

val based on how many reservations there are. For the read in Figure 5.4, there are

10 tokens total, but Server 2 knows that it has not used its local tokens, so it knows

that there cannot be more than 5 outstanding increments. The server does a weak

read from its closest replica, gets the value 100 because the increments have not yet

propagated, and returns the interval [100,105]. If instead the read went to Server 1,

it would observe the value 102, but it would not know that Server 2 hasn’t used its

tokens, so the interval would be [102,109].

5.5.2.3. Narrowing bounds

Error tolerance policies set an upper bound on the amount of error; ideally, the interval

returnedwill bemore precise than themaximum errorwhen conditions are favorable,
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such as when there are few update operations. Rather than assuming the total num-

ber of tokens is always the maximum allowable by the error bound, we instead keep

an allocation table for each record that tracks the number of tokens allocated to each

reservation server. If a reservation server receives an update operation and does not

have enough tokens allocated, it updates the allocation table to allocate tokens for it-

self. The allocation table must preserve the invariant that the total does not exceed

the maximum tokens allowed by the current value. For example, for a value of 100,

10 tokens were allowed, but after 1 decrement, only 9 tokens are allowed. Whenever

this occurs, the server that changed the bound must give up the “lost” token out of

its own allocations. As long as these updates are done atomically (in Cassandra, this

is done using linearizable conditional updates), the global invariant holds. Because of

this synchronization, reading and writing the allocation table is expensive and slow,

so we use long leases (on the order of seconds) within each reservation server to cache

their allocations. When a lease is about to expire, the server preemptively refreshes its

lease in the background so that writes do not block unnecessarily.

For each type of update operation there may need to be a different pool of reser-

vations. Similarly, there could be different error bounds on different read operations.

It is up to the designer of the ADT to ensure that all error bounds are enforced with

appropriate reservations. Consider a Set with an error tolerance on its size oper-

ation. This requires separate pools for add and remove to prevent the overall size

from deviating by more than the bound in either direction, so the interval is [v −

remove.delta,v+ add.delta]where v is the size of the set and delta computes the

number of outstanding operations from the pool. In some situations, operations may

produce and consume tokens in the same pool – e.g., increment producing tokens

for decrement – but this is only allowable if updates propagate in a consistent order

among replicas, which may not be the case in some eventually consistent systems.

5.6. Implementation

5.6.1. Backing datastore

IPA is implemented mostly as a client-side library to an off-the-shelf distributed stor-

age system, though reservations are handled by a custommiddleware layer whichme-

diates accesses to any data with error tolerance policies. Our implementation is built

on top of Cassandra, but IPA could work with any replicated storage system that sup-
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ports fine-grained consistency control, which many commercial and research datas-

tores do, including Riak [22].

IPA’s client-side programming interface is written in Scala, using the asyn-

chronous futures-based Phantom [123] library for type-safe access to Cassandra data.

Reservation server middleware is also built in Scala using Twitter’s Finagle frame-

work [158]. Communication is done between clients and Cassandra via prepared

statements, and between clients and reservation servers via Thrift remote-procedure-

calls [13]. Due to its type safety features, abstraction capability, and compatibility with

Java, Scala has become popular for web service development, including widely-used

frameworks such as Akka [103] and Spark [12], and at established companies such

as Twitter and LinkedIn [2, 37, 71].

5.6.2. Type system

The IPA type system, responsible for consistency safety, is also simply part of our client

library, leveraging Scala’s sophisticated type system. The IPA type lattice is imple-

mented as a subclass hierarchy of parametric classes, using Scala’s support for higher-

kinded types to allow them to be destructured in match statements, and implicit con-

versions to allow Consistent[T] to be treated as type T. We use traits to implement

ADT annotations; e.g. when the LatencyBound trait is mixed into an ADT, it wraps

each of the methods, redefining them to have the new semantics and return the cor-

rect IPA type.

5.6.3. Provided by IPA

IPA comes with a library of reference ADT implementations used in our experiments,

but it is intended to be extended with custom ADTs to fit more specific use cases. Our

implementation provides a number of primitives for building ADTs, some of which

are shown in Figure 5.5. To support latency bounds, there is a generic LatencyBound

trait that provides facilities for executing a specified read operation at multiple con-

sistency levels within a time limit. For implementing error bounds, IPA provides a

generic reservation pool which ADTs can use. Figure 5.5 shows how a Counter with

error tolerance bounds is implemented using these pools. The library of reference

ADTs includes:

• Counter based on Cassandra’s counter, supporting increment and decrement,

with latency and error bounds
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trait LatencyBound {

  // execute readOp with strongest consistency possible

  // within the latency bound

  def rush[T](bound: Duration, 

              readOp: ConsistencyLevel => T): Rushed[T]

}

/* Generic reservaton pool, one per ADT instance. 

   `max` recomputed as needed (e.g. for % error) */

class ReservationPool(max: () => Int) {

  def take(n: Int): Boolean // try to take tokens

  def sync(): Unit      // sync to regain used tokens

  def delta(): Int      // # possible ops outstanding

}

/* Counter with ErrorBound (simplified) */

class Counter(key: UUID) with ErrorTolerance {

  def error: Float // % tolerance (defined by instance)

  def maxDelta() = (cassandra.read(key) * error).toInt

  val pool = ReservationPool(maxDelta)

  

  def read(): Interval[Int] = {

    val v = cassandra.read(key)

    Interval(v - pool.delta, v + pool.delta)

  }

  def incr(n: Int): Unit =

    waitFor(pool.take(n)) { cassandra.incr(key, n) }

}

Figure 5.5. Some of the reusable components provided by IPA and an example implemention

of a Counter with error bounds.

• BoundedCounter CRDT from [20] that enforces a hard lower bound even with

weak consistency. Our implementation adds the ability to bound error on the

value of the counter and set latency bounds.

• Set with add, remove, contains and size, supporting latency bounds, and error

bounds on size.

• UUIDPool generates unique identifiers, with a hard limit on the number of IDs

that can be taken from it; built on top of BoundedCounter and supports the same

bounds.

• List: thin abstraction around a Cassandra table with a time-based clustering or-

der, supports latency bounds.

Figure 5.5 shows Scala code using reservation pools to implement a Counter with

error bounds. The actual implementation splits this functionality between the client

and the reservation server.
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5.7. Evaluation

The goal of the IPA programming model and runtime system is to build applications

that adapt to changing conditions, performing nearly as well as weak consistency but

with stronger consistency and safety guarantees. To that end, we evaluate our proto-

type implementation under a variety of network conditions using both a real-world

testbed (Google Compute Engine [68]) and simulated network conditions. We start

with simple microbenchmarks to understand the performance of each of the runtime

mechanisms independently. We then study two applications in more depth, exploring

qualitatively how the programming model helps avoid potential programming mis-

takes in each and then evaluating their performance against strong and weakly con-

sistent implementations.

5.7.1. Simulating adverse conditions

To control for variability, we perform our experiments with a number of simulated

conditions, and then validate our findings against experiments run on globally dis-

tributed machines in Google Compute Engine. We use a local test cluster with nodes

linked by standard ethernet and Linux’s Network Emulation facility [154] (tc netem)

to introduce packet delay and loss at the operating system level. We use Docker con-

tainers [57] to enable fine-grained control of the network conditions between pro-

cesses on the same physical node.

Table 5.2 shows the set of conditions we use in our experiments to explore the

behavior of the system. The uniform 5ms link simulates a well-provisioned datacen-

ter; slow replica models contention or hardware problems that cause one replica to

be slower than others, and geo-distributed replicates the latencies between virtual ma-

chines in the U.S., Europe, and Asia on Amazon EC2 [9]. These simulated conditions

are validated by experiments on Google Compute Engine with virtual machines in

four datacenters: the client in us-east, and the storage replicas in us-central, europe-west,

and asia-east. We elide the results for Local (same rack in our testbed) except in Fig-

ure 5.13 because the differences between policies are negligible, so strong consistency

should be the default there.
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Network Condition Latencies (ms)

Simulated Replica 1 Replica 2 Replica 3

Uniform / High load 5 5 5

Slow replica 10 10 100

Geo-distributed (EC2) 1 ± 0.3 80 ± 10 200 ± 50

Actual Replica 1 Replica 2 Replica 3

Local (same rack) <1 <1 <1

Google Compute Engine 30 ± <1 100 ± <1 160 ± <1

Table 5.2.Network conditions for experiments: latency from client to each replicas, with stan-

dard deviation if high.

5.7.2. Microbenchmark: Counter

We start by measuring the performance of a simple application that randomly incre-

ments and reads from a number of counters with different IPA policies. Randomoper-

ations (incr(1) and read) are uniformly distributed over 100 counters from a single

multithreaded client (allowing up to 4000 concurrent operations).

5.7.2.1. Latency bounds

Latency bounds provide predictable performance while maximizing consistency. We

found that when latencies and load are low it is often possible to achieve strong con-

sistency. Figure 5.6 shows the average operation latency with strong and weak consis-

tency, as well with both 10ms and 50ms latency bounds.

As expected, there is a significant cost to strong consistency under all network

conditions. IPA cannot achieve strong consistency under 10ms in any case, so the sys-

tem must always default to weak consistency. With a 50ms bound, IPA can achieve

strong consistency in conditions when network latency is low (i.e., the single datacen-

ter case). Cassandra assigns each client to read at a different replica for load balancing,

so, with one slow replica, IPA will attempt to achieve strong consistency for all clients

but not succeed. In our experiments, IPAwas able to get strong consistency 83% of the

time. Finally, with our geo-distributed environment, there are no 2 replicas within
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Figure 5.6. Counter with latency bounds: Mean latencies are below the bound. Beneath each bar

is % of reads that were strong, which we see is never possible for the 10ms bound, but 50ms

bound achieves mostly strong, only resorting to weak when network latency is high.
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Figure 5.7. Counter with latency bounds: 95th percentile latency is improved by bounds, though

they sometimes exceed the bounds due to unpredictability of the platform.

50ms of our client, so strong consistency is never possible within our bounds; as a

result, IPA adapts to only attempt weak in both cases.

Figure 5.7 shows the 95th percentile latencies for the same workload. The tail la-
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Figure 5.8. Counter with error tolerance.We see that wider error bounds reduce mean latency of

increment and read operations because fewer synchronizations are required, matching weak

around 5-10%.

tency of the 10ms bound is comparable to weak consistency, whereas the 50ms bound

overloads the slow server with double the requests, causing it to exceed the latency 5%

of the time. There is a gap between latency-bound and weak consistency in the geo-

distributed case because the weak condition uses weak reads and writes, while our

rushed types, in order to have the option of getting strong reads without requiring a

read of ALL, must do QUORUM writes.

Note that, without consistency types, it would be challenging for programmers

to handle the varying consistency of returned values in changing network conditions.

However, IPA’s type system not only gives programmers the tools to reason about

different consistency levels, it enforces consistency safety.

5.7.2.2. Error bounds

This experiment measures the cost of enforcing error bounds using the reservation

system described in §5.5.2, and its precision. Reservations move synchronization

off the critical path: by distributing write permissions among replicas, reads can

get strong guarantees from a single replica. Note that reservations impact write

performance, so we must consider both in our experiments.

Figure 5.8 shows latencies for error bounds of 1%, 5%, and 10%, plotting the av-
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Figure 5.9. Counter with error tolerance: Observed % error for weak and strong, compared with

the actual interval widths returned for 1% error tolerance. Mean actual error observed was

less than 1% but can be as high as 60% without bounds.

erage of read and increment operations. As expected, tighter error bounds increase

latency because it forces more frequent synchronization between replicas. The 1% er-

ror bound provides most of the benefit, except in the slow replica and geo-distributed

environments where it forces synchronization frequently enough that the added la-

tency slows down the system. 5-10% error bounds provide latency comparable to

weak consistency. In the geo-distributed case, the coordination required for reserva-

tions makes even the 10% error bound 4× slower than weak consistency, but this is

still 28× faster than strong consistency.

While we have verified that error-bounded reads remain within our defined

bounds, we also wish to know what error occurs in practice. We modified our bench-

mark to observe the actual error from weak consistency by incrementing counters

a predetermined amount and reading the value; results are shown in Figure 5.9. We

plot the percent error of weak and strong against the actual observed interval width

for a 1% error bound, going from a read-heavy (1% increments) to write-heavy (all

increments, except to check the value).

First, we find that the mean interval is less than the 1% error bound because, for

counters that are less popular, IPA is able to return a more precise interval. At low

write rate, this interval becomes even smaller, down to .5% in the geo-distributed ex-

periment. Next, we find that the mean error with weak consistency is also much less
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than 1%; however the maximum error that we observed is up to 60% of the actual

value. This result motivates the need for error bounded consistency to ensure that ap-

plications do not see drastically incorrect values from weakly consistent operations.

Further, using the Interval type, IPA is able to give the application an estimate of

the variance in the weak read, which is often more precise than the upper bound set

by the error tolerance policy.

5.7.3. Applications

Next, we explore the implementation of two applications in IPA and compare their

performance against Cassandra using purely strong or weak consistency on our sim-

ulated network testbed and Google Compute Engine.

5.7.3.1. Ticket service

Our Ticket sales web service, introduced in §5.3, is modeled after FusionTicket [1],

which has been used as a benchmark in recent distributed systems research [164, 165].

We support the following actions:

• browse: List events by venue

• viewEvent: View the full description of an event including number of remaining

tickets

• purchase: Purchase a ticket (or multiple)

• addEvent: Add an event at a venue.

Figure 5.10 shows a snippet of code from the IPA implementation which can be

compared with the non-IPA version from Figure 5.2. Tickets are modeled using the

UUIDPool type, which generates unique identifiers to reserve tickets for purchase.

The ADT ensures that, even with weak consistency, it never gives out more than the

maximum number of tickets, so it is safe to endorse the result of the take operation

as long as one is okay with the possibility of a false negative. Rather than just using

a weak read as in the original example, in IPA we can bound the inconsistency of

the remaining ticket count using an error tolerance annotation on the tickets pool.

Now to compute the price of the reserved ticket, we call getTicketCount and get an

Interval, forcing us to decide how to handle the range of possible ticket counts. We

decide to use the max value from the interval to be fair to users; the 5% error bound

ensures that we don’t sacrifice too much profit this way.
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// creates a table of pools, so each event gets its own

// 5% error tolerance on `remaining` method, weak otherwise

val tickets = UUIDPool() with Consistency(Weak)

                with Remaining(ErrorTolerance(0.05))

// called from displayEvent (& purchaseTicket)

def getTicketCount(event: UUID): Interval[Int] =

  tickets(event).remaining()

def purchaseTicket(event: UUID) = {

  // UUIDPool is safe even with weak consistency (CRDT)

  endorse(tickets(event).take()) match {

    case Some(ticket) =>

      // imprecise count returned due to error tolerance

      val remaining = getTicketCount(event)

      // use maximum count possible to be fair

      val price = computePrice(remaining.max)

      display("Ticket reserved. Price: $" + price)

      prompt_for_payment_info(price)

    case None =>

      display("Sorry, all sold out.")

  }

}

Figure 5.10. Ticket service code demonstrating consistency types.

To evaluate the performance, we run a workload modelling a typical small-scale

deployment: 50 venues and 200 events, with an average of 2000 tickets each (gaus-

sian distribution centered at 2000, stddev 500); this ticket-to-event ratio ensures that

some events run out tickets. Because real-world workloads exhibit power law distri-

butions [51], we use a moderately skewed Zipf distribution with coefficient of 0.6 to

select events.

Figure 5.11 shows the average latency of aworkload consisting of 70% viewEvent,

19% browse, 10% purchase, and 1% addEvent. We plot with a log scale because strong

consistency has over 5× higher latency. The purchase event, though only 10% of the

workload, drives most of the latency increase because of the work required to prevent

over-selling tickets. We explore two different IPA implementations: one with a 20ms

latency bound on all ADTs aiming to ensure that both viewEvent and browse com-

plete quickly, and one where the ticket pool size (“tickets remaining”) has a 5% error

bound. We see that both perform with nearly the same latency as weak consistency.

With the low-latency condition (uniform and high load), 20ms bound does 92% strong

reads, 4% for slow replica, and all weak on both geo-distributed conditions.

Figure 5.11 also shows results on Google Compute Engine (GCE). We see that the
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Figure 5.11. Ticket service: mean latency, log scale. Strong consistency is far too expensive (>10×

slower) except when load and latencies are low, but 5% error tolerance allows latency to be

comparable to weak consistency. The 20ms latency-bound variant is either slower or defaults

to weak, providing little benefit. Note: the ticket Pool is safe even when weakly consistent.
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Figure 5.12. Ticket service: throughput onGoogleComputeEngine globally-distributed testbed.

Note that this counts actions such as tweet, which can consist of multiple storage operations.

Because error tolerance does mostly weak reads and writes, its performance tracks weak. La-

tency bounds reduce throughput due to issuing the same operation in parallel.

results of real geo-replication validate the findings of our simulated geo-distribution

results.

On this workload, we observe that the 5% error bound performs well even under

adverse conditions, which differs from our findings in the microbenchmark. This is
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class User(id: UserID, name: String,

  followers: Set[UserID] with LatencyBound(20 ms),

  timeline: List[TweetID] with LatencyBound(20 ms))

class Tweet(id: TweetID, user: UserID, text: String,

  retweets: Set[UserID] with Size(ErrorTolerance(5%)))

def viewTimeline(user: User) = {

  // `range` returns `Rushed[List[TweetID]]`

  user.timeline.range(0,10) match { // use match to unpack

    case Consistent(tweets) =>

      for (tweetID <- tweets) 

        displayTweet(tweetID)

    case Inconsistent(tweets) =>

      // tweets may not have fully propagated yet

      for (tweetID <- tweets)

        // guard load and retry if there's an error

        Try { displayTweet(tweetID) } retryOnError

  }

}

def displayTweet(id: TweetID, user: User) = {

  val rct: Interval[Int] = tweets(id).retweets.size()

  if (rct > 1000) // abbreviate large counts (e.g. "2k")

    display("${rct.min/1000}k retweets")

  else if (rct.min == rct.max) // count is precise!

    display("Exactly ${rct.min} retweets")

  //...

  // here, `contains` returns `Consistent[Boolean]`

  // so it is automatically coerced to a Boolean

  if (tweets(id).retweets.contains(user))

    disable_retweet_button()

}

Figure 5.13. Twitter data model with policy annotations, Rushed[T] helps catch referential

integrity violations and Interval[T] represents approximate retweet counts.

because ticket UUIDPools begin full, with many tokens available, requiring less syn-

chronization until they are close to running out. Contrast this with the microbench-

mark, where counters started at small numbers (average of 500), where a 5% error

tolerance means fewer tokens.

5.7.4. Twitter clone

Our second application is a Twitter-like service based on the Redis data modeling

example, Retwis [137]. The data model is simple: each user has a Set of followers, and

a List of tweets in their timeline. When a user tweets, the tweet ID is eagerly inserted

into all of their followers’ timelines. Retweets are tracked with a Set of users who

have retweeted each tweet.
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Figure 5.14. Twitter clone: mean latency (all actions). The IPA version performance comparably

with weak consistency in all but one case, while strong consistency is 2-10× slower.

Figure 5.13 shows the data model with policy annotations: latency bounds

on followers and timelines and an error bound on the retweets. This ensures that

when tweets are displayed, the retweet count is not grossly inaccurate. As shown in

displayTweet, highly popular tweets with many retweets can tolerate approximate

counts – they actually abbreviate the retweet count (e.g. “2.4M”) – but average tweets,

with less than 20 retweets, will get an exact count. This is important because for

regular people, they will notice if a friend’s retweet is not reflected in the count,

whereas Ellen Degeneres’s record-breaking celebrity selfie, which nearly brought

down Twitter in 2014 [15], can scale because a 5% error tolerance on 3.4 million

retweets provides significant slack.

The code for viewTimeline in Figure 5.13 demonstrates how latency-bound

Rushed[T] types can be destructured with a match statement. In this case, the time-

line (list of tweet IDs) is retrieved with a latency bound. Tweet content is added to the

store before tweet IDs are pushed onto timelines, so with strong consistency we know

that the list of IDs will all be able to load valid tweets. However, if the latency-bound

type returns with weak consistency (Inconsistent case), then this referential integrity

property may not hold. In that case, we must guard the call to displayTweet and

retry if any of the operations fails (e.g., if the retweet set wasn’t created yet).

We simulate a realistic workload by generating a synthetic power-law graph, us-

ing a Zipf distribution to determine the number of followers per user. Our workload
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is a randommix with 50% timeline reads, 14% tweet, 30% retweet, 5% follow, and

1% newUser.

We see in Figure 5.14 that for all but the local (same rack) case, strong consis-

tency is over 3× slower. Our implementation, combining latency and error-bounds,

performs comparablywithweak consistency butwith stronger guarantees for the pro-

grammer. Our simulated geo-distributed condition turns out to be the worst scenario

for IPA’s Twitter, with latency over 2× slower than weak consistency. This is because

weak consistency performed noticeably better on our simulated network, which had

one very close (1ms latency) replica that it used almost exclusively.

5.8. Discussion

At a high level, one can see disciplined inconsistency as a marriage of approximate comput-

ing research with the field of distributed systems. Coming from the field of Computer

Architecture, approximate computing [133] is the idea that a lot of work in computer

systems goes toward ensuring that everything is perfectly precise and reliable, yet not

all computations have such strict needs. By allowing programs to be less correct in

parts, performance and energy efficiency can be improved. The same is already recog-

nized to be true in distributed systems, with eventual consistency as the poster child

of allowing programs to be incorrect in order to let themperformwell and scale. How-

ever, distributed systems are lacking in the second piece of approximate computing,

which is disciplined programmingmodels that ensure that important parts of the pro-

grams remain precise. IPA’s consistency safety type system is inspired by EnerJ [32,

134] and Rely [38, 111], which annotate and track the flow of approximate values to

prevent them from interfering with precise computation.

Disciplined inconsistency differs from approximate computing in several crucial

ways. First of all, people already frequently use inconsistency in real applications, so

this work, rather than introducing the idea of approximation, is actually pushing back

against approximation, encouraging safer use of inconsistency only where necessary.

Furthermore, themajority of approximations employed in hardware irretrievably lose

data [60, 70, 135], whereas inconsistency is transient: the “precise” value can be re-

trieved whenever desired simply by synchronizing more aggressively.

The dynamic policies of IPA build on prior systems techniques, incorporating

them into the type system to make them safer to use. IPA’s latency bound policies

were inspired by the consistency-based SLAs of Pileus [153]. In Pileus, reads return their
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consistency level, but do not help developers use that information; on the other hand,

Rushed types ensure that developers considerweak outcomes. Error tolerance bounds

are enforced using a technique that extends reservations [66, 122, 127, 130] and bor-

rows ideas from Bounded Counter CRDTs [20], which are similar to allocation tables.

Interval types used to express error-bounded values are similar in usage to Uncer-

tain<T>’s probability distributions [31] and to interval analysis [112].

In summary, the IPA programming model provides programmers with disci-

plined ways to trade consistency for performance in distributed applications. By

specifying application-specific performance and accuracy targets in the form of la-

tency and error tolerance bounds, they tell the system how to adapt when conditions

change and provide it with opportunities for optimization. Meanwhile, consistency

types guarantee consistency safety, ensuring that all potential weak outcomes are

handled and allowing applications to make choices based on the accuracy of the

values the system returns. The policies, types and enforcement systems implemented

in this work are only a sampling of the full range of possibilities within the framework

of Inconsistent, Performance-bound, and Approximate types.
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6. Conclusion

6.1. Retrospective

6.1.1. Vertical abstractions

The techniques employed in this work required new abstractions that cut across the

traditional layered abstractions of the system stack, tying low-level implementations

more directly into the high-level behavior of applications. There is still a tension be-

tween communicating too much to the lower level, leading to couplings that make it

more difficult to swap in alternative backends and increasing the complexity of the

simpler low-level systems. The trick here is to find the correct granularity and speci-

ficity to incorporate into the abstraction. One of the keys to this dissertation is using

abstract data types because they strike a balance between generality — common ADTs

like sets and maps are fairly universal — and specificity — properties like commu-

tativity provide useful optimization opportunities while not tying them to concrete

implementation details.

6.1.2. Unnecessary synchronization

Much of the improvements presented in this dissertation come down to reducing syn-

chronization, either by recognizing additional concurrency in the form of commuta-

tivity or by helping programmers use weaker, more approximate, semantics. This is

because synchronization is at the core of most scalability problems, and many appli-

cations could scale much better if only they knewwhich ordering constraints were ac-

tually essential. Techniques like distributed combining and abstract locking can help

improve performance, but the best optimizations come from better understanding

the desired behavior and choosing data structures that correctly capture only what is

necessary. We saw this in the BFS kernel in §3.3.2 how the list of unordered bags bet-

ter captured the needs of the algorithm than a fully ordered queue. Similarly, Claret

(Chapter 4) was designed to be extensible for this very reason, to allow developers to

create their own ADTs that better fit their needs. IPA (Chapter 5) takes this to a new
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level by introducing approximation into the mix, intentionally making some data in-

consistent where accuracy is not essential, in order to improve performance.

6.1.3. Real workloads

It is always important to recognize and consider the benchmarks used to evaluate

work. Some challenges — such as extreme contention, traffic spikes, and other irreg-

ular access patterns — will only be apparent if the workloads used to evaluate sys-

tems capture this, exhibiting features like skewed power-law distributions, network

and timing effects, and adverse network conditions. If the techniques explored in this

disseration had only ever been evaluated on read-heavy workloads or uniform distri-

butions, it would have appeared that many of them were unnecessary. However, we

know that real web services have to deal with the unpredictable barrage of internet

traffic, and graph analytics applications must operate on real social graphs with a host

of challenging properties. In order to approximate the behavior of real applications

for use in our evaluations, we have simplified the workloads, using realistic synthetic

graphs in all of the chapters of this disseration, and simple usermodels based on power

laws inChapter 4 andChapter 5. Anobvious next stepwould be to attempt to use these

techniques in real production systems to validate that they are still effective there.

6.2. Open problems

Research often opens newavenues of inquirymore than it closes them.The techniques

described in this dissertation contribute to the toolkit available to distributed applica-

tion developers, but that toolkit is by nomeans complete yet. There are ample opportu-

nities to improve upon the systems that have been presented. In addition, it would be

useful to step back a bit and evaluate how the proposed programming model changes

actually affect the productivity of developers.

6.2.1. Applying Alembic-style migration in other environments

Choosing where execution and data should reside in large distributed applications is

still a difficult challenge. Alembic addressed a need in PGAS languages to automat-

ically move parts of computation closer to the data it accesses. However, similar mi-

gration opportunities exist inmany other distributed systems. Typical mobile applica-

tionsmust be divided between client-side code running on the device and applications
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servers running in the cloud, potentially further divided among many independent

services and data storage platforms. In such a complicated environment, changing

data layout to improve communication— such as adding a layer of caching, denormal-

izing, or materializing queries — may require significant changes to the code. Many

current platform-as-a-service (PaaS) frameworks [62, 108, 124] encourage most ap-

plication code to be in the client application. This provides an opportunity for auto-

matically extracting parts of the client application to execute on the server side. We

have done preliminary work for offloading parts of Redis applications automatically

generating server-side Lua code to replace client-side Redis commands.

6.2.2. Checking and synthesis of implementations

As discussed above, the vertical abstractions proposed in this disseration have a cost

in terms of added complexity within the underlying systems. Currently, the burden

is on the expert developer who designs each ADT to ensure that it is correctly imple-

mented, and as we incorporate more intelligence into the systems, there is more that

can go wrong. In Claret, new ADTs express their commutativity and associativity by

declaring abstract locks and combiners, but there is currently no way to checks that

it is actually safe to commute those operations. IPA’s ADTs also require the expert de-

veloper to ensure that all the consistency constraints are met, such as ensuring that

all possible combinations of read and write operations still maintain strong consis-

tency. It would be beneficial to have some guarantee that the ADT implementations

are valid, similar to the commutativity tests generated by Commuter [48]. If designed

well enough, this could enable more developers to create their own ADTs.

Beyond checking that implementations are correct, it would be even better if cor-

rect implementations could be synthesized from high-level descriptions. An exam-

ple of this field of work is Cozy [106], which synthesizes collections from SQL-like

queries. In the context of IPA, it may be possible to synthesize approximate versions

of data structures based on some description of its semantics and the desired proper-

ties. A system like Cozy that knows the semantics and costs a priori would be well-

positioned to choose the best ways to relax the implementation to improve perfor-

mance. Currently, the consistency policies of IPA require manual help from ADT de-

signers to be used; it would greatly improve the usability of the tool if these annota-

tions could be freely applied to any ADT operation, giving programmers a way to pick

and choose exactly which approximations their application desires.
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6.2.3. Productivity and usability studies

The programming models proposed in this work are generally intended to improve

the expressivity of applications and reduce the chances that programmers will make

mistakes, without burdening themwith excessive annotation or verification work. By

leveraging the data structures already present in the applications, we gain information

without requiring significant changes. However, it would be informative to directly

studywhether or not these programmingmodels affect the productivity of developers.

In the context of IPA especially, it would be useful to see if developers of distributed ap-

plications find the dynamic policies and consistency types useful in developing more

robust software. The difficulty lies in evaluating the effect on productivity, comparing

the additional work of wrangling consistency types with the potential benefits of en-

suring consistency safety. It would also be useful to port larger, existing applications

and evaluate them on production workloads because that is where the true benefit is.

For example, would consistency types have caught already-known bugs, or does us-

ing IPA reduce the number of consistency violations that users observe? The Claret

programming model is very similar to that of Redis; with some work, it should be

possible to enhance Redis with Claret’s optimizations, enabling efficient distributed

transactions to be added to existing Redis applications.

A closely related concern is how applications can and should deal with inconsis-

tent data. For the most part, inconsistency shows itself in subtle ways to end users. It

could be that when the page is refreshed, some posts are reordered, or that the count

of “likes” on a post is not the same in two different views. Some user interface designs

have found ways to incorporate uncertainty in ways that are useful to end users, such

as abbreviating counts so that the precise number is not visible (e.g., “3.7M retweets”),

or pending changes being greyed out until they are correctly synchronized. A survey

of such user interfaces could provide ideas as to how programmers should be deal-

ing with inconsistency in their applications andmay inform new abstractions that are

more natural than the Rushed and Interval types sketched in IPA.

6.2.4. Wrap-up

This dissertation has proposed several advancements tomake it easier to build perfor-

mant and robust distributed applications. The techniques described contribute to an

ever-growing body of tools, programming systems, frameworks, and languages for

building distributed applications. These various programming models, consistency
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models, and systems—past, present, and future— are not in competitionwith one an-

other; rather, they build on one another. They re-examine lessons learned in the past,

reviving the ideas about ADT databases and bringing them into the modern world

of web services, replicated weakly consistent datastores, and graph analytics. By ex-

posing more knowledge about the high-level requirements of applications to lower

layers of the system stack, this dissertation has shown that there is tremendous op-

portunity in leveraging semantics and breaking old abstractions, and there will be

many more to come.
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