
⚗ Alembic

1

Automatic Locality Extraction via Migration
Brandon Holt, Preston Briggs, Luis Ceze, Mark Oskin

2

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

2

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Thread

2

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Thread

Data

2

Partitioned Global Address Space (PGAS)

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Thread

Data

X10

Grappa

2

Partitioned Global Address Space (PGAS)

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Thread

Data

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

thread migration*

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

RPC†

thread migration*

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

RPC†

thread migration*

explicit (on/at)

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

RPC†

thread migration*

explicit (on/at)

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

…

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

generated by
PGAS compilers

RPC†

thread migration*

explicit (on/at)

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

…

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

3

Move data or computation?

Thread

Data

move data move computation

Thread

generated by
PGAS compilers

RPC†

thread migration*

explicit (on/at)

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

…

Why not automatically
move computation?

Memory

Cores

...
Memory

Cores

Memory

Cores

Interconnect

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

Memory

Cores

...

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

4

Move data or computation?

Thread

Data

move data move computation

Thread

Why not automatically
move computation?generated by

PGAS compilers

RPC†

thread migration*

…

* M. C. Carlisle and A. Rogers. Software
caching and computation migration in
Olden. In PPOPP ’95, ACM.

† L. V. Kale and S. Krishnan. CHARM++: A
portable concurrent object oriented system
based on C++. OOPSLA ’93. ACM.

⚗ Alembic
 automatically move computation 

to reduce communication

5

⚗ Alembic
 Static optimizing migration algorithm

– Constrained by anchor points
– Greedy heuristic to reduce communication

 Implementation for C++ in LLVM

 Evaluation
– 6x better than naive compiler-generated

communication
– 82% of hand-tuned performance

5

⚗ Alembic
 Static optimizing migration algorithm

– Constrained by anchor points
– Greedy heuristic to reduce communication

 Implementation for C++ in LLVM

 Evaluation
– 6x better than naive compiler-generated

communication
– 82% of hand-tuned performance

⚗ algorithm

6

⚗ algorithm
 Locality analysis

– Identify anchor points
– Partition anchors into locality sets

 Heuristic region selection
– Divide into regions that minimize communication
– Transform task to migrate at region boundaries

6

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark
⚗ algorithm

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark

 count: 0
winner:

 count: 0
winner:A: count: 0

winner:

⚗ algorithm

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark

 count: 0
winner:

 count: 0
winner:A: count: 0

winner:

210200 102B:

⚗ algorithm

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark

forall(0, B.size, [A,B](long i) {  
 Counter global* a = A + B[i];  
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive  
 a->winner = i; // is winner  
});

 count: 0
winner:

 count: 0
winner:A: count: 0

winner:

210200 102B:

⚗ algorithm

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark

forall(0, B.size, [A,B](long i) {  
 Counter global* a = A + B[i];  
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive  
 a->winner = i; // is winner  
});

 count: 0
winner:

 count: 0
winner:A: count: 0

winner:

210200 102B:

i=4

B[4]
2

A[2] count: 1
winner: 4

⚗ algorithm

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark

forall(0, B.size, [A,B](long i) {  
 Counter global* a = A + B[i];  
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive  
 a->winner = i; // is winner  
});

 count: 0
winner:

 count: 0
winner:A: count: 0

winner:

210200 102B:

i=4

B[4]
2

A[2] count: 1
winner: 4

⚗ algorithm

 Anchor points
– memory locations are owned by one node
– so memory references are anchored to that node
– these are constraints on the thread’s execution

Node 0 Node 1 Node 2

locality analysis

7

HOPS Benchmark

forall(0, B.size, [A,B](long i) {  
 Counter global* a = A + B[i];  
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive  
 a->winner = i; // is winner  
});

 count: 0
winner:

 count: 0
winner:A: count: 0

winner:

⚓︎
⚓︎

⚓︎

210200 102B:

i=4

B[4]
2

A[2] count: 1
winner: 4

⚗ algorithm

⚓︎

locality analysis

8

⚗ algorithm

A
B

i

fetch_add(&a->count, 1)
a->winner = i

B[i]

locality analysis

8

⚗ algorithm

 Locality partitioning: pessimistic value partitioning* (value numbering)
– each anchor starts in its own set
– merge sets if you can prove they are congruent
– for locality partitioning: congruence means on the same node

A
B

i

fetch_add(&a->count, 1)
a->winner = i

B[i]

* B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs.
POPL ’88, pages 1–11. ACM, 1988.

locality analysis

9

⚗ algorithm

 Locality partitioning: pessimistic value partitioning* (value numbering)
– each anchor starts in its own set
– merge sets if you can prove they are congruent
– for locality partitioning: congruence means on the same node

A

B

i

fetch_add(&a->count, 1)

a->winner = i

B[i]

* B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs.
POPL ’88, pages 1–11. ACM, 1988.

locality analysis

9

⚗ algorithm

 Locality partitioning: pessimistic value partitioning* (value numbering)
– each anchor starts in its own set
– merge sets if you can prove they are congruent
– for locality partitioning: congruence means on the same node

A

B

i

fetch_add(&a->count, 1)

a->winner = i

B[i]

Plug in your own
locality-congruence rules!

* B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs.
POPL ’88, pages 1–11. ACM, 1988.

region selection

 Region selection (heuristic optimization)

10

⚗ algorithm

[A,B](long i) { 
 Counter global* a = A + B[i]; 
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive 
 a->winner = i; // is winner 
}

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

region selection

 Region selection (heuristic optimization)

10

⚗ algorithm

[A,B](long i) { 
 Counter global* a = A + B[i]; 
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive 
 a->winner = i; // is winner 
}

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

region selection

 Region selection (heuristic optimization)

10

⚗ algorithm

[A,B](long i) { 
 Counter global* a = A + B[i]; 
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive 
 a->winner = i; // is winner 
}

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

⚗ algorithm

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

⚗ algorithm

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

⚗ algorithm

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

migration
messages

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

⚗ algorithm

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

⚗ algorithm

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

continuation data
(message size)

⚗ algorithm

region selection

 Region selection (heuristic optimization)

11

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

Dependence Graph

communication cost heuristic:
 function of # of messages and
 message size (continuation size)

region:
 contiguous sequence of instructions
 (or a DAG of basic blocks) which can
 all execute on the same node

⚗ algorithm

- 2 messages
- extra data stays
- fixed 8-byte payload

- 1 message
- payload includes

the extra data

Modified HOPS to use extra data
after the remote operation

Message cost experiment

12

blocking
operation

migrate

???

region selection⚗ algorithm

- 2 messages
- extra data stays
- fixed 8-byte payload

- 1 message
- payload includes

the extra data

Modified HOPS to use extra data
after the remote operation

Message cost experiment

12

blocking
operation

migrate

???

region selection⚗ algorithm

0.000

0.005

0.010

0.015

0.020

0.025

16 32 48 64 80 96 112 128
Data size (bytes)

G
U

PS
async
blocking

migrate
blocking

25

20

15

10

05

00

op
s/

se
c

(m
ill

io
ns

)

Thread state size (bytes)

region selection

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible
– at region intersections, compute cost

heuristic for the possible choices

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible
– at region intersections, compute cost

heuristic for the possible choices

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible
– at region intersections, compute cost

heuristic for the possible choices

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible
– at region intersections, compute cost

heuristic for the possible choices
– evaluate intersections pair-wise, greedily

choose the best in each case

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

region selection

 Region selection (heuristic optimization)
– for each anchor, expand a region as far as

possible
– at region intersections, compute cost

heuristic for the possible choices
– evaluate intersections pair-wise, greedily

choose the best in each case

13

⚗ algorithm

A B i

fetch_add(&a->count, 1)

a->winner = i

B[i]

prev

if (prev == 0)

a = _ + _

14

⚗ algorithm

 Transform thread to migrate at region boundaries
– create continuations for values that cross regions,  

and pack them into active messages

14

⚗ algorithm

 Transform thread to migrate at region boundaries
– create continuations for values that cross regions,  

and pack them into active messages

[A,B](long i) { 
 Counter global* a = A + B[i]; 
 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive 
 a->winner = i; // is winner 
}

15

⚗ algorithm

 Transform thread to migrate at region boundaries
– create continuations for values that cross regions,  

and pack them into active messages

[a,i]{

 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive 
 a->winner = i; // is winner 
}

[A,B](long i) {

 migrate(node(B+i), _);

}

[A,B,i]{

 Counter global* a = A + B[i];

 migrate(node(a), _);

}

15

⚗ algorithm

 Transform thread to migrate at region boundaries
– create continuations for values that cross regions,  

and pack them into active messages

[a,i]{

 long prev = fetch_add(&a->count, 1); 
 if (prev == 0) // first to arrive 
 a->winner = i; // is winner 
}

[A,B](long i) {

 migrate(node(B+i), _);

}

[A,B,i]{

 Counter global* a = A + B[i];

 migrate(node(a), _);

}

16

⚗ Alembic
 Static optimizing migration algorithm

– Constrained by anchor points
– Greedy heuristic to reduce communication

 Implementation for C++ in LLVM

 Evaluation
– 6x better than naive compiler-generated

communication
– 82% of hand-tuned performance

⚗ Implementation
 C++ extensions to support global pointers

 Anchor point / locality partitioning analysis pass

 Region selection and continuation-passing transform pass

17

18

⚗ Alembic
 Static optimizing migration algorithm

– Constrained by anchor points
– Greedy heuristic to reduce communication

 Implementation for C++ in LLVM

 Evaluation
– 6x better than naive compiler-generated

communication
– 82% of hand-tuned performance

 Benchmarks
– Ported Grappa applications (irregular, data-intensive, …)

 Performance (12 nodes)
– naive put/get compiler-generated  

communication
– hand-tuned migration decisions
– Alembic-generated migrations

19

⚗ evaluation

Connected Components
Pagerank
BFS

Intsort

 Benchmarks
– Ported Grappa applications (irregular, data-intensive, …)

 Performance (12 nodes)
– naive put/get compiler-generated  

communication
– hand-tuned migration decisions
– Alembic-generated migrations

19

⚗ evaluation

Connected Components
Pagerank
BFS

Intsort

GlobalHashSet symmetric* set; 
Graph symmetric* g; 
 
void explore(VertexID r, color_t color) { 
 Vertex global* vs = g->vertices(); 
 phaser.enroll(vs[r].nadj) 
 forall<async>(adj(g,vs+r), [=](VertexID j){ 
 auto& v = vs[j]; 
 if (cmp_swap(&v.color, -1, color)){ 
 spawn([=]{ explore(j, color); }); 
 } else if (v.color != color) { 
 Edge edge(color, v.color); 
 set->insert(edge); 
 phaser.complete(1); 
 } 
 }); 
 phaser.complete(1); 
} 

 Benchmarks
– Ported Grappa applications (irregular, data-intensive, …)

 Performance (12 nodes)
– naive put/get compiler-generated  

communication
– hand-tuned migration decisions
– Alembic-generated migrations

19

⚗ evaluation

Connected Components
Pagerank
BFS

Intsort

GlobalHashSet symmetric* set; 
Graph symmetric* g; 
 
void explore(VertexID r, color_t color) { 
 Vertex global* vs = g->vertices(); 
 phaser.enroll(vs[r].nadj) 
 forall<async>(adj(g,vs+r), [=](VertexID j){ 
 auto& v = vs[j]; 
 if (cmp_swap(&v.color, -1, color)){ 
 spawn([=]{ explore(j, color); }); 
 } else if (v.color != color) { 
 Edge edge(color, v.color); 
 set->insert(edge); 
 phaser.complete(1); 
 } 
 }); 
 phaser.complete(1); 
} 

20

Performance
(MTEPS)

Data moved
(GB)

0

25

50

75

100

0

100

200

put/get

alembic

manual

put/get

alembic

manual

Performance
(MOPS)

Data moved
(GB)

0

50

100

150

200

0

100

200

300

put/get

alembic

manual

put/get

alembic

manual

Performance
(MTEPS)

Data moved
(GB)

0

2

4

6

8

0

25

50

75

put/get

alembic

manual

put/get

alembic

manual

Performance
(MTEPS)

Data moved
(GB)

0

10

20

30

40

0

50

100

150

200

250

put/get

alembic

manual

put/get

alembic

manual

BFS Pagerank
Connected

components Intsort

⚗ evaluation

be
tte

r

21

Performance
(MTEPS)

Data moved
(GB)

0

25

50

75

100

0

100

200

put/get

alembic

manual

put/get

alembic

manual

Performance
(MOPS)

Data moved
(GB)

0

50

100

150

200

0

100

200

300

put/get

alembic

manual

put/get

alembic

manual

Performance
(MTEPS)

Data moved
(GB)

0

2

4

6

8

0

25

50

75

put/get

alembic

manual

put/get

alembic

manual

Performance
(MTEPS)

Data moved
(GB)

0

10

20

30

40

0

50

100

150

200

250

put/get

alembic

manual

put/get

alembic

manual

BFS Pagerank
Connected

components Intsort

⚗ evaluation

Performance
(MTEPS)

Data moved
(GB)

0

25

50

75

100

0

100

200

put/get

alembic

manual

put/get

alembic

manual

Performance
(MOPS)

Data moved
(GB)

0

50

100

150

200

0

100

200

300

put/get

alembic

manual

put/get

alembic

manual

Performance
(MTEPS)

Data moved
(GB)

0

2

4

6

8

0

25

50

75

put/get

alembic

manual

put/get

alembic

manual

Performance
(MTEPS)

Data moved
(GB)

0

10

20

30

40

0

50

100

150

200

250

put/get

alembic

manual

put/get

alembic

manual

better

be
tte

r

22

⚗ Alembic
 Algorithm to make automatic migration decisions

– Analyze locality by partitioning anchors
– Greedy optimization to reduce communication cost heuristic

 LLVM implementation for Grappa C++
 Performance — near hand-tuned, much better than PGAS baseline

Brandon Holt, Preston Briggs, Luis Ceze, Mark Oskin

