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Irregular Applications
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Fraud detection

Barnes-Hut n-body simulation

[Eclipse.sx]

Social network analysis

Machine learning

ClusteringBioinformatics
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Irregular Applications
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S.cerevisiae 
[von Mering et al.]

Challenges Opportunities

Data-dependent 
execution 
– work imbalance 

– dynamic data distribution

Poor data locality 
– unpredictable, small, 

frequent accesses 
across all of memory 

– difficult to partition 
Lots of data! 
– We can exploit 

this parallelism!
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Partitioned Global Address Space (PGAS) 
programming model 
– memory distributed over cluster and partitioned 

among cores 

– programmed as a single machine (global view) 

– C++11 library interface 

Runtime capabilities: 
– Aggregated communication 

– Cooperatively-scheduled lightweight threads 
for latency tolerance 

– Access other cores’ data only via  
delegate operations 

– Sequential consistency
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Partitioned Global Address Space (PGAS) 
programming model 
– memory distributed over cluster and partitioned 

among cores 

– programmed as a single machine (global view) 

– C++11 library interface 

Runtime capabilities: 
– Aggregated communication 

– Cooperatively-scheduled lightweight threads 
for latency tolerance 

– Access other cores’ data only via  
delegate operations 

– Sequential consistency

using namespace Grappa; 
!
void grappa_main() { 
 
  auto array = global_alloc<int>(N); 
 
  forall_global(0, N, [=](int i){ 
 
    auto val = delegate::read( array+i ); 
    if (val == 0) { 
      delegate::call((array+i).core(),[=]{ 
        // ... 
      }); 
    } 
 
  }); 
}
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Standard library aids productivity

synchronized shared 
data structures

Generality costs performance/scalability
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Worker s->push(8)

Worker s->push(4)

Worker s->pop()

Global Stack
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Master
top

42 13 7 5
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Global heap

Must maintain consistency

more concurrency → more contention

Standard library aids productivity

synchronized shared 
data structures

Generality costs performance/scalability
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Contention causes failed lock acquires 
(typically compare-and-swaps) 

Retries consume bandwidth 

Sharing causes cache traffic/thrashing

�7

contention: global lock
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Same result: serialized access
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contention: fine-grained sync
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“Flat Combining and the 
Synchronization-Parallelism 
Tradeoff” 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Flat combining
Core

Core

Core
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Thread 1 push( )

Thread 2 pop()

Thread 3 push( )

Master

42 13 7

Thread 4 push( )

Stack

top

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

Simple locking scheme, but maximum of 
1 failed CAS per thread 

– beats combining trees and funnels 
– beats fine-grained synchronization 

Applicable if combined ops are faster than 
individually, due to: 

– cache locality 

– shared traversal (e.g. some linked list) 

– better sequential algorithm  
(priority queue: pairing heap vs. skiplist)

[1]   D. Handler, I. Incze, N. Shavit, M. Tzafrir. “Flat Combining and the Synchronization-Parallelism Tradeoff” (SPAA 2010) 

[2]   D. Hendler, I. Incze, N. Shavit, M. Tzafrir. “Scalable Flat-Combining Based Synchronous Queues” (DISC 2010) 

[3]   S. Kahan and P. Konecny. “MAMA!” (2006) 

[4]   N. Shavit and A. Zemach. “Combining funnels” (2000) 

[5]   P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. “Combining trees” (1987)

in multicore
[5] [3,4]

[1,2]

�10
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Distributed synchronization 

– reduce serialization on global lock 

– avoid making operations globally 
visible if possible
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Combining structure: local proxy 
– calls operate on this instead 
– resolve locally if possible
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Distributed synchronization 

– reduce serialization on global lock 

– avoid making operations globally 
visible if possible

Combining structure: local proxy 
– calls operate on this instead 
– resolve locally if possible

One worker commits combined op 
– progress guarantee: 

always one in flight per core
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One worker becomes combiner: 
– freeze current Proxy, create fresh one for 

next round 
– globally commit 
– wake blocked workers  

when finished 
– trigger next Proxy to go
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Flat combining in PGAS
C++ model: SC for Data-Race-Free 

Enforcing linearizability: 
– ensure program order by blocking thread 

until globally committed 

– globally- and locally-observable order 
must coincide
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�15

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker



Brandon Holt – Quals – 7 Nov 2013

Flat combining in Grappa
Massive multithreading 

– many workers, lots of combining 

– lightweight suspend/wake 

Synchronizing with Proxy is free 
– cooperative multithreading within core 

– only access other cores’ memory via 
delegate ops

�15

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker



Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

Methodology 
Random throughput workload 
– With/without flat combining 
– Varied operation mix  

(push/pop, lookup/insert)

�16

void test(GlobalAddress<GlobalStack<long>> stack) 
{  
  forall_global(0, 1<<28, [=](long i){ 
    if (choose_random(push_mix)) { 
      stack->push(next_random<long>()); 
    } else {  
      stack->pop(); 
    } 
  }); 
}  

Experimental setup 
– Run on the PIC cluster at Pacific Northwest National Lab (PNNL) 
– AMD Interlagos 2.1 GHz, 

40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch) 
– 16 cores per node, 

2048 workers per core
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performance evaluation
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Experimental setup 
– Run on the PIC cluster at Pacific Northwest National Lab (PNNL) 
– AMD Interlagos 2.1 GHz, 

40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch) 
– 16 cores per node, 

2048 workers per core

  Application Kernels 
– Scale 26 Graph500-spec graph  

(64 M vertices, 1 B edges) 
– Breadth First Search benchmark 

(find parent tree from random root) 
– Connected Components  

(using 3-phase algorithm)
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Flat combining
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Future directions:
“Schrödinger” consistency
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Future directions:
“Schrödinger” consistency

�21

Hiding even more behind high-level data structure abstraction 

Delay synchronization as long as possible 
– commit when operation would be able to observe order 
– example: pushes kept local, pops search for an available push
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abstract data structure semantics
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Future directions:
abstract data structure semantics
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“Transactional Boosting” 
– abstract semantics to determine conflicts 

– express how operations affect and observe abstract state 

– abstract locks determine what can happen concurrently 

– inverse operations for rolling back aborted transaction 

Applying to Grappa and distributed memory 
– commutative ops proceed locally in parallel 

– inverse ops annihilate without external synchronization 

– tasks with conflicting operations delayed; when out of tasks with 
commutative ops, then commit and allow others to proceed 

Synthesize abstract lock conditions from annotations 

Maurice Herlihy & Eric Koskinen. PPoPP 2008. 
Transactional Boosting: A Methodology for Highly-Concurrent Transactional Objects.
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Thank you!
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