Turning Contention
Into Cooperation:

Reducing the cost of synchronized
global data structures in Grappa

simple, distributed,
batched synchronization

sequential consistency
at cluster scale

© Disney, Inc. Fantasia (The Pastoral Symphony)

Brandon Holt, Jacob Nelson, Brandon Myers,
Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin

W R sal



Irregular Applications

Bioinformatics

Social network analysis

e Fraud detection
| il Machine learning
i) 1§t Clustering



- Ir,r;gu\ar Applications

S.cerevisiae
[von Mering et al.]

w ’ Sa ”'pa Brandon Holt - MSR: Cambridge - 9 Oct 2013



Grappa: a latency-tolerant PGAS runtime

Partitioned Global Address Space (PGAS)
programming model

— memory distributed over cluster and partitioned
among cores

— programmed as a single machine (global view)

— C++11 library interface

Runtime capabilities:
— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency

Core 0O Core C
(Worker main() ) (Worker read() )
(Worker ) (Worker write())
(Worker ) (Worker calc() )
(Worker ) (Worker push() )
N dep/ : : ode
7 AN 7
re %/ Core| |Core Cok\ Core /{ore Core
fTasks Ework().
work () :
: oo ' :
: Menfwory Merhory
/ i el I el R - === \I
: Global Heap :
\ d
S 7
Aggregation buffer
Network

W R saijl

Brandon Holt - PGAS "13 - 3-4 Oct 2013




Grappa: a latency-tolerant PGAS runtime

Core C

Partitioned Global Address Space (PGAS) Lol
(Worker read() )

. Worker main()
programming model Q _ 2

— memory distributed over cluster and partitioned =~ “5*"& NaMesPace Grappa;

among cores void grappa_main() {
— programmed as a single machine (global view)

: : auto array = global_alloc<int>(N);
— C++11 library interface

forall_global(@, N, [=](int 1i){
Runtime capabilities:

auto val = delegate::read( array+i );
if (val == 0) {
delegate::call((array+i).core(),[=1{

I I‘LZ

— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency

Aggregation buffer

Network

w @ ,', Brandon Holt - PGAS "13 - 3-4 Oct 2013




Grappa: a latency-tolerant PGAS runtime

Partitioned Global Address Space (PGAS)
programming model

— memory distributed over cluster and partitioned
among cores

— programmed as a single machine (global view)

— C++11 library interface

Runtime capabilities:
— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency

Core 0O Core C
(Worker main() ) (Worker read() )
(Worker ) (Worker write())
(Worker ) (Worker calc() )
(Worker ) (Worker push() )
N dep/ : : ode
7 AN 7
re %/ Core| |Core Cok\ Core /{ore Core
fTasks Ework().
work () :
: oo ' :
: Menfwory Merhory
/ i el I el R - === \I
: Global Heap :
\ d
S 7
Aggregation buffer
Network

W R saijl

Brandon Holt - PGAS "13 - 3-4 Oct 2013




Grappa: a latency-tolerant PGAS runtime

Partitioned Global Address Space (PGAS)
programming model

— memory distributed over cluster and partitioned
among cores

— programmed as a single machine (global view)

— C++11 library interface

Runtime capabilities:
— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency

W

NHi

Core O
(Worker main() )
(Worker )
(Worker )
Worker . )

Brandon Holt - PGAS "13 - 3-4 Oct 2013

Core C

(Worker read()%
(Worker write()) ?

(Worker ca

(Worker

D4
Cok\ Core /gore Core

o000
Memory
et et s I et | - - = — - — - - - = = N
|
Global Heap ,
/
S g
Aggregation buffer
Network




Grappa: a latency-tolerant PGAS runtime

Partitioned Global Address Space (PGAS)
programming model

— memory distributed over cluster and partitioned
among cores

— programmed as a single machine (global view)

— C++11 library interface

Runtime capabilities:
— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency

W

NHi

Core O
(Worker main() )
(Worker )
(Worker )
Worker . )

Brandon Holt - PGAS "13 - 3-4 Oct 2013

Core C

(Worker read()%
(Worker write()) ?

(Worker ca

(Worker

D4
Cok\ Core /gore Core

o000
Memory
et et s I et | - - = — - — - - - = = N
|
Global Heap ,
/
S g
Aggregation buffer
Network




synchronized shared

data structures

(Worker s—>push(7)j
(Worker s—>push(8)j
(Worker s=>pop() j

Standard library aids productivity

Generality costs performance/scalability (Worker s—>push(4)j
Node O Node N /
/ 4
Core ¢ Core ¢ ore ¢ core CD

... C oo 1 ..

C C
S Globalheap = |
| |
S A 1 |
"( Master Global Stack ::
:: top |
| storage !
Il 42 | 13 7 5 Z:
II\~ e B P S = B = N o "_'_' — T = = = '.I_' e A S = A '_'I/

| ]

.

Brandon Holt — Quals — 7 Nov 2013




synchronized shared

data structures

(Worker s—>push(7)j
(Worker s—>push(8)j
(Worker s=>pop() j

Standard library aids productivity

Generality costs performance/scalability (Worker s—>push(4)j
Must maintain consistency .
Node O Node N /
/ 7
Core ¢ Core ¢ ore ¢ core CD
... C . oo 1 ..
C C
S Globalheap = |
| |
L . R R N |
"= Master Global Stack ::
:' top |
| storage !
| 42 | 13 7 5 Z:
I\ e B P S = B = N o I'_ - T L = '.I_' e A S = A '_'I/
| ]

.

Brandon Holt — Quals — 7 Nov 2013



synchronized shared
data structures

Standard library aids productivity
Generality costs performance/scalability

Must maintain consistency

Node O
Core ¢ Core C(
C/J /
/4
111 yo4

Core
(Worker S->push(7)j
(Worker s—>push(8)j
(Worker s=>pop () j
(Worker s->push(4)j

Global Stack -

storage

____________

. T e 3

Brandon Holt — Quals — 7 Nov 2013




synchronized shareo

data structures

Standard library aids productivity

Generality costs performance/scalability

Must maintain consistency

Core C(

J

VI 4
y 7 4

Core
(Worker S->push(7)j
(Worker s—>push(8)j
(Worker s=>pop () j
(Worker s->push(4)j

A

more concurrency — more contention

7 7 7
ore ¢ core CD
C
|
|
__________ |
Y
lobal Stack
|
storage 'l
|
|

W R sal

Brandon Holt — Quals — 7 Nov 2013

____________




contention = cooperation

W R sallpa



10N

contention = cooperat

(LN
TR

Brandon Holt - PGAS "13 - 3-4 Oct 2013

Nni

W



contention = cooperation

\"\ "

W g ',, Brandon Holt - PGAS "13 - 3-4 Oct 2013



— cooperation

e
e,
:‘“"')'. ~— S
gls
B

\// 2
ez ) | l//7li

S
~
>

P

Brandon Holt - PGAS "13 - 3-4 Oct 2013



NHi

— cooperation

1

Brandon Holt - PGAS "13 - 3-4 Oct 2013



— cooperation

Brandon Holt - PGAS "13 - 3-4 Oct 2013



contention: global lock

Core

(Thread 1 push ( ))

Contention causes failed lock acquires

— ' (typically compare-and-swaps)

(Threadz /(p'op() j

e Retries consume bandwidth

(Thread?/ push ( )j . . .
— Sharing causes cache traffic/thrashing

______________________________

W @ ,', Brandon Holt — Quals - 7 Nov 2013




contention: fine-grained sync

Core

(Thread 1 push ( ))

Complicated schemes are error-prone

Core

(Thread 2 A Pop() j Still failed compare-and-swaps and retries
Core I /l

(Threads,/ oush( ) Same result: serialized access

Core i/'/’

‘(Threa(f.{/’l}push( ))

______________________________

W @ ,', Brandon Holt — Quals - 7 Nov 2013




cooperation: flat combining

Core

(Thread 1 push(4))

Core
(Thread 2 |pop()

Core
(Thread 3 |push(8)

Core

‘(Thread 4 push(7))

| Stack '
| ( Master h

| 7N

| top

|

AN

|

| 42 13 7

|

N e e e e

W a ”, Brandon Holt — Quals - 7 Nov 2013

[1] "Flat Combining and the
Synchronization-Parallelism
Tradeoff”

Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir
(SPAA "10)



cooperation: flat combining

Cooperation via publication list

[1] "Flat Combining and the

Synchronization-Parallelism
Tradeoff”

Core Publication Record
(Thread 1 push(4))
Core Publication Rec%rd .
. One combiner does all the work
(Thread 2 |pop() '
Core Publication Rec@rd
(Thread 3 |push(8) I
Core Publication Re@rd
]
‘(Thread 4 push(7)) |
k
— — = = = — — = = = = = = = = — A - T T === ==
| % Stack '
. ( Master Publication List |\ |
| ~ |l head e ! |
| top head |
| I
AN |
I I
| 42 13 7 |
| I
N e e /

Brandon Holt — Quals — 7 Nov 2013

Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir
(SPAA '10)



cooperation: flat combining

[1] "Flat Combining and the

Synchronization-Parallelism
Tradeoff”

Core Publication Record . . . . .
(hread1 |pusncr ) [ 4 Cooperation via publication list
C Publication R cAd o
_— e One combiner does all the work
(Thread 2 |popQ) _ !
Core Publication Rec@rd
(Thread 3 |push( ) 8 :
Core Publication Re@rd
]
‘(Thread 4 |push( )) 7 |
n
— — — — — = = = = = = = = = = — 0 e e
| S, Stack '
. ( Master Publication List )\ |
| ~N Ll heade—eeo- ! |
| top head |
| |
AN |
| |
| 42 13 7 |
| |
N e e /

Brandon Holt — Quals — 7 Nov 2013

Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir
(SPAA '10)



cooperation: flat combining

Brandon Holt — Quals — 7 Nov 2013

Core Publication Record . . . . .
(Thread 1 |push )b . Cooperation via publication list
Core Publication Rec%rd .
. One combiner does all the work
(Thread 2 |pop() _ !
Core Publication Rec@rd
(Thread 3 |push( ) 8 :
Core Publication Re@rd
]
[)Thread 4 |push( ) 7 |
v
n
T I — e e
| 0, Stack '
. ( Master Publication List |\ |
Ll heade—eeae- ! |
| top head |
| |
| |
| . | 1w Fiat Combining and the
| 19 13 ; | ?énjggifrzlzatlon-Parallellsm
| /l Danny Hendler, Itai Incze, Nir
e Shavit, and Moran Tzafrir

(SPAA "10)



cooperation: flat combining

Cooperation via publication list

One combiner does all the work

Core Publication Record
(ThreadI push( )b 4
Core Publication Rec%rd
]
(Thread 2 |popQ) _ '
Core Publication Rec@rd
(Thread 3 |push( ) 8 I
IcOre Publication Re@r
]
BThread 4 |push( ) 7 |
| Stack '
4 ) . . .
| Master Publication List |
| I
| top head |
| I
AN |
| I
| 42 13 7 |
| I
N e e /

Brandon Holt — Quals — 7 Nov 2013

[1] "Flat Combining and the
Synchronization-Parallelism
Tradeoff”

Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir
(SPAA "10)



cooperation: flat combining

Core Publication Record . . . . .
(Thread 1 |push >b . Cooperation via publication list
Core Publication Rec%rd .
. One combiner does all the work
(Thread 2 |pop() !
Core Publication Rec@r
(Thread 3 |push( ) :
ICore Publication Re@r
]
BThread 4 |push( ) 7 |
| Stack '
. ( Master Publication List |
| |
| top head |
| |
| |
| . | 1 gt Combining and the
| 19 13 ; | ?énjggifrzization-Parallelism
l\ /l Danny Hendler, Itai Incze, Nir
_____________________________ Shavit, and Moran Tzafrir

(SPAA "10)

W '9 ”’ Brandon Holt — Quals — 7 Nov 2013 9



cooperation: flat combining

Core Publication Record . . . . .
(Thread1 |push >b . Cooperation via publication list
C Publication R CA o
— e One combiner does all the work
(Thread 2 |pop() '
Core Publication Rec@r
(Thread 3 |push( ) :
IcOre Publication Re@r
]
BThread 4 |push( ) 7 |
| Stack '
. ( Master Publication List |
| |
| top head |
| |
| |
| b | [1] "Flat Combining and the
I 42 13 ] | ?énjggifrzization-Parallelism
l\ /l Danny Hendler, Itai Incze, Nir
_____________________________ Shavit, and Moran Tzafrir

(SPAA "10)

W '9 ”’ Brandon Holt — Quals — 7 Nov 2013 9



cooperation: flat combining

Core Publication Record . . . . .
(Thread1 |push >b Cooperation via publication list
C Publication R CA o
— e One combiner does all the work
(Thread 2 |pop() '
Core Publication Rec@r
(Thread 3 |push( ) :
IcOre Publication Re@r
]
ﬁThread 4 |push( ) '
| Stack '
. ( Master Publication List |
| |
| top head |
| |
| |
| b 4 | [1] "Flat Combining and the
I 42 13 , 7 4 | ?énjggifrzization-Parallelism
l\ /l Danny Hendler, Itai Incze, Nir
_____________________________ Shavit, and Moran Tzafrir

(SPAA "10)

W '9 ”’ Brandon Holt — Quals — 7 Nov 2013 9



cooperation: flat combining

Cooperation via publication list

[1] "Flat Combining and the

Synchronization-Parallelism
Tradeoff”

Core Publication Record
(ThreadI push ( ))
Core Publication Rec%rd .
. One combiner does all the work
(Thread 2 |pop() '
Core Publication Rec@rd
(Thread 3 |[push( ) I
Core Publication Re@rd
]
I(Thread 4 |push( )) (
k
— — — — — = = = = = = = = = = — 0 e e
| % Stack '
. ( Master Publication List |\ |
| ~ |l o head e ! |
| top head |
| I
BN Y |
I I
| 42 13 7 7 4 |
| I
N e e /

Brandon Holt — Quals — 7 Nov 2013

Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir
(SPAA '10)



[1.2] e

Flat combining in multicore

Simple locking scheme, but maximum of = =
s Thread 1 | push( ) A

1 failed CAS per thread ——Y
. . [5] [314] (ThreadZ pop() b ' A

— beats combining trees and funnels p——
(Thread3 push( )b i }

— beats fine-grained synchronization =T Pucton ed

__________

Master

EU top

Applicable if combined ops are faster than
individually, due to:

— cache locality

______________________________

— shared traversal (e.g. some linked list)

— better sequential algorithm
(priority queue: pairing heap vs. skiplist)

[1] D. Handler, I. Incze, N. Shavit, M. Tzafrir. “Flat Combining and the Synchronization-Parallelism Tradeoff” (SPAA 2010)
[2] D. Hendler, I. Incze, N. Shavit, M. Tzafrir. “Scalable Flat-Combining Based Synchronous Queues” (DISC 2010)

[3] S. Kahan and P. Konecny. “"MAMA!" (2006)

[4] N. Shavit and A. Zemach. “"Combining funnels” (2000)

[5] P-C.Yew, N.-F. Tzeng, and D. H. Lawrie. “Combining trees” (1987)

W @ ,” Brandon Holt — Quals - 7 Nov 2013



Flat combining in PGAS

Distributed synchronization Core
. 1. . Work ->push (7)
— reduce serialization on global lock e )
(Worker s—>push(8)j
— avoid making operations globally (worker [s->pop0> )
visible if possible (Worker [s->push(4))
Node O \Node
N\
Core ¢ Core ¢ Core (] Core CD
C °eo an |
G Globalheap = |
Global Stack ‘-:
I
: I
J top T T T[T TTe==al N :I
: A} storage :'
| : |
‘\'_' e 'l_';'_' e '.I'_'_' -t T - -t - - - T - - - l/
| ]

W R sal

Brandon Holt — Quals — 7 Nov 2013

11



Flat combining in PGAS

Distributed synchronization core G N
. e . Work ->push(7) buffer push_count
— reduce serialization on global lock e )
(Worker s—>push(8)j
— avoid making operations globally (worker [s->pop0> )
visible if possible (Worker [s->pushc4))
Combining structure: local proxy
. Node O Node
— calls operate on this instead N [——
. . Core ¢ Core ¢ Core [ Core /CD
— resolve locally if possible C °° -
[ | /
C Global heap o
e bal Stack :
T master ;:
| top TTTTTTTe—nl . |
! * storage :'
L a2 |13 | 7 ;:
I‘\'_' -— = e = 'l_';'_' — = - '.I'_'_' -— = = — T == == '_';'_"/
| _I

W R saijl

Brandon Holt — Quals — 7 Nov 2013

11



Flat combining in PGAS

Distributed synchronization Caie T o \
. e . Work ->push(7) buffer push_count
— reduce serialization on global lock e
(Worker s—>push(8)j
— avoid making operations globally (worker [s->pop0> )
visible if possible (Worker [s->push(4))
Combining structure: local proxy
.. Node O Node
— calls operate on this instead N [——
. . Core ¢ Core ¢ Core [ Core /CD
— resolve locally if possible C °e -
[ | /
AU ) T ) S
: : Global hea |
One worker commits combinedop || ;oo R |
bal Stack
— progress gu.arar.fcee. | :
always one in flight per core | top =T Fm-=-IIs : !
: A} storage :'
| 7 ::
‘\'_' -— = e = 'l_';'_' — = - '.I'_'_' - - - T - - cat - - - - - - '/
| _I

W R saijl

Brandon Holt — Quals — 7 Nov 2013

11



Flat combining in PGAS

W

Nni

(

Proxy

buffer push_count

\

Core
(Worker s->push(7))
(Worker s->push(8)]
(Worker s->pop() )
(Worker s->push(4))

Node O

Core g Core (

C
R T

—-~-~

Brandon Holt — Quals — 7 Nov 2013

12



Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

W

Nni

s—>push(7)j

s—>push(8)]

s=>pop() :)

s—>push(4))

Core
(Worker
(Worker
(Worker
(Worker
Node O
Core g Core (
C
A

- o
-
-
~

(

Proxy

buffer push_count

\

Brandon Holt — Quals — 7 Nov 2013

12



Flat combining in PGAS

Workers operate on local proxy

— resolve locally where possible - Worker

W

Nni

s=->push( )j

(Worker

s—>push(8)]

(Worker

s=>pop() :)

(Worker

s—>push(4))

(

- o
-
-
~

Proxy

buffer push_count

\

Brandon Holt — Quals — 7 Nov 2013

12



Flat combining in PGAS

Workers operate on local proxy

Core i Proxy h

— resolve locally where possible (Worker |s->pusn( )) buffer push_count
.“/(Worker
(Worker
(Worker

- o
-
-
~

W Q ”I Brandon Holt — Quals — 7 Nov 2013 12



Flat combining in PGAS

Workers operate on local proxy

Core

— resolve locally where possible (Worker

W

Nni

s=->push( {)

(Worker

." ,(Wo rker

(Worker

(

- o
-
-
~

Proxy

buffer push_count

\

Brandon Holt — Quals — 7 Nov 2013

12



Flat combining in PGAS

Workers operate on local proxy

Core

— resolve locally where possible (Worker

W

Nni

s=->push( {)

(Worker

(Worker

= (Worker

(

Proxy

buffer push_count

\

Brandon Holt — Quals — 7 Nov 2013

Core ¢ Core (
E 00
{ Global heap
-
| N
| 7
___________ o

12



Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

One worker becomes combiner:

Core

(Worker

s=->push( )j

(Worker

s=->push( )j

(Worker

— freeze current Proxy, create fresh one for % Worker

next round
— globally commit

— wake blocked workers
when finished

— trigger next Proxy to go

W R saijl

s=>pop() :)

\
-> h
s pus()/

(

Proxy

buffer push_count

\

Brandon Holt — Quals — 7 Nov 2013

Node 0
Core g Core (
C 00
O Global heap
a
flotop T -l .
I A}
Ll a2 | 13 | 7
I-
e e T e e 'I_l';'_' i — '_I'.I'_'_' —_— s Tt - e -t - T -t

12



Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

One worker becomes combiner:

— freeze current Proxy, create fresh one for % Worker

next round
— globally commit

— wake blocked workers
when finished

— trigger next Proxy to go

W R saijl

Brandon Holt — Quals — 7 Nov 2013

[ Proxy )
Core o Proxy h
(Worker s->push( )j buffer push_count
(Worker s->push( )j 7
(Worker s=>pop() ] 4
N\
->push
s->push( )/
Node O \Node
Ay / 7
Core ¢ Core ¢ Cor? /(\ Core /CD
¢ o o% CT
C C
[/ /
f Global heap |
e I L Y |
e bal Stack
A
|' Master |
I top B . |
1 ~ storage :'
L a2 | 13 | 7 ;:
I‘\'_' e e T e S 'I_';'_' — = = '.I'_'_' —_— e T - T D '_';'_'l/
| ]

12



Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

One worker becomes combiner:

Core

(Worker

s=->push( )j

(Worker

s=->push( )j

(Worker

s=>pop() j

\
-> h
s->push( )/

— freeze current Proxy, create fresh one for  Stiorker

next round
— globally commit

— wake blocked workers
when finished

— trigger next Proxy to go

W R saijl

Proxy )

t Proxy

buffer push_count

O

\

Brandon Holt — Quals — 7 Nov 2013

Node O
N 7 7
Core ¢ Core ¢ Cor? /(\ Core /C)
¢ NN @
C C
| | /
f Global heap |
L |
:Z bal Stack |,
:I Master :
) top T TTTTTTTTTT—al . |
| A} storage
: I
Ll 42 | 13 | 7 4 !
I‘\'_' e R 'I_'; — T = T '.I'_ . = . A 1 = S = = AL l/
| _l

12



Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

One worker becomes combiner:

— freeze current Proxy, create fresh one for

next round
— globally commit

— wake blocked workers
when finished

— trigger next Proxy to go

W

NHi

~N

Brandon Holt — Quals — 7 Nov 2013

Core ( Proxy
(Worker s=>push( )) buffer push_count
(Worker s->push( )j
(Worker s->pop() )
(Worker s->push( ))
Node O \Node / : ; :
Core ¢ Core ( (
C 00
f Global heap
a
A S .
) 4
L a2 | 13 4
I-
___________ B

12



Flat combining in PGAS

Sequential Consistency

(yVorker s->push(3{)\
(Worker s—>pop () \ >‘ pop() \'\¢
(IVorker s->pop() :}/ :
(Worker ) | i
I
I

— — — — — — — — o— o—)

GlobalStack
| Committed Order
C++ model: SC for Data-Race-Free i : |
|
. " R oo | push(1) |
Enforcing linearizability: Core | |
( push(2) |
. Worker S—>pUSh(®))\ SUE I
— ensure program order by blocking thread (Worker [s-wousnc | pop() :
until globally committed e > )y! PRI push(3) |
Worker |s->pop |
| — — L —
— globally- and locally-observable order (Worker [s->push(2) O\ push@
. . I L
must coincide : o lpush() | :
| —I
| pop () |
|
Core : pop() |
| |
| |
|
|
|
|
|
|

W % ,I, Brandon Holt — Quals — 7 Nov 2013 13



Flat combining in PGAS

Sequential Consistency

C++ model: SC for Data-Race-Free

Enforcing linearizability:

— ensure program order by blocking thread

until globally committed

— globally- and locally-observable order

must coincide

push/pop annihilate each other, can
be anywhere in global order

W

NHi

GlobalStack

GlobalStack
I Committed Order
| .
I
| push(1)
Core |
(Worker s->push(®))\ Sush(0) | push(2)
I
(Worker s—>push(1))\’ oush(2) | pop ()
\ push(3)
(Worker s->pop () )’ ——— =9 -
I h(1 | -
(Worker s->push(2))/ ._p_us_(_) | I !_p_usi(_o_) |
. L PO : | push(2) |
[ I L — I — —
| pop ()
Core : 0
(Worker s—>push(3))\ | oush(4)
(Worker “pop) ) >( Pope) \;\¢
(Worker s->pop() y I
(Worker ) i

Brandon Holt — Quals — 7 Nov 2013

—

13



Flat combining in PGAS

Sequential Consistency

lookup (0)

'

— — — — — — — — — —

(yVorker :)

GlobalSet
C++ model: SC for Data-Race-Free | Committed Order
| : |
. [ ] L] ofjo i t 1 |
Enforcing linearizability: Core R el D |
- (&Vorker insert(0):)\ - ! insert(2) |
— ensure program order by blocking thread insert@ || Hoorunch |
until globally committed (Worer |insert() R\ [inserecn | L ookup (3 :
(&Vorker 100kUp(1):}’ lookup(1) | p— |
— globally- and locally-observable order (Worker [imserc> Y[ | linsert(e) | |
must coincide RS B N N
. | |1nsert(1)I |
! |lookup(1;1 :
| C———7
Core : !_1nsert(2)I |
(Worker [inserccay N [insert® | o T
|
(VVorker lookup(1)j}‘ Toeiupll) : insert(7) |
Lookup(3) | |
(&Vorker lookup(B):}/ | |
| |
| |
| |

Brandon Holt — Quals — 7 Nov 2013 14



Flat combining in PGAS

Sequential Consistency

C++ model: SC for Data-Race-Free

Enforcing linearizability:

— ensure program order by blocking thread
until globally committed

— globally- and locally-observable order
must coincide

GlobalSet/GlobalMap

— insert/lookup must preserve order

— cheaper to disallow local lookups

Core

(&Vorker

(VVorker

(&Vorker

(&Vorker

insert(0)

insert(1)

lookup(1)

insert(2)

Core

(&Vorker

(VVorker

(&Vorker

(&Vorker

insert(3)

lookup(1)

lookup(3)

Brandon Holt — Quals — 7 Nov 2013

GlobalSet

insert(1)

insert(2)

lookup (1)

lookup(3)

—_ - L

=
|insert(®)I

L =

—
|insert(1)I

=

—
|lookup(1)I

L

—
|insert(2)I

I___l__

insert(6)

insert(7)

lookup (0)

'

—

14



Flat combining in PGAS

Sequential Consistency

C++ model: SC for Data-Race-Free

Enforcing linearizability:

— ensure program order by blocking thread
until globally committed

— globally- and locally-observable order
must coincide

GlobalSet/GlobalMap

— insert/lookup must preserve order

— cheaper to disallow local lookups

Core

(&Vorker

insert(0)

(VVorker

insertJ))

(&Vorker

lookup\'1)‘\/l

(&Vorker

insert(2) J ‘

GlobalSet

|insert(@)

insert(1)

Yookup (1)

insert(2)

Core

(&Vorker

(VVorker

(&Vorker

(&Vorker

insert(3)

lookup(1)

lookup(3)

Brandon Holt — Quals — 7 Nov 2013

insert(1)

insert(2)

lookup (1)

lookup(3)

—_ - L

=
|insert(®)I

L =

—
|insert(1)I

=

—
|lookup(1)I

L

—
|insert(2)I

I___l__

insert(6)

insert(7)

lookup (0)

'

— — — — — — — — — —

14



Flat combining in

W

NHi

Grappa

Core O

(Worker

main() )

(Worker

(Worker

N/

(Worker

\__/

e/ P—

Brandon Holt — Quals — 7 Nov 2013

Core C
(Worker read() )
(Worker write())
(Worker calc() )
(Worker . push() )

ode

AN 7
re 956’/ Core| |Core Cok\ Core fore Core
‘Tasks : Ework().
work () '
: oo : :
. Memory Memory
T T - —— -+ - - - Hl— - = - - = -—_—= = N
[
: Global Heap I
3 /
N g
Aggregation buffer
Network

15



Flat combining in Grappa

Massive multithreading
— many workers, lots of combining

— lightweight suspend/wake

Synchronizing with Proxy is free
— cooperative multithreading within core

— only access other cores’ memory via
delegate ops

Core O

(Worker

(Worker

(Worker

(Worker

P e e e e

e e e e G o o o e

Aggregation buffer

W R saijl

Brandon Holt — Quals — 7 Nov 2013

Network

Global Heap

Core C
(Worker read() )
(Worker write())
(Worker calc() )
(Worker . push() )

ode

Core

Cok\

/
A{gre

Core

work().!b

O ———

15



Flat combining
performance evaluation

Experimental setup
— Run on the PIC cluster at Pacific Northwest National Lab (PNNL)

— AMD Interlagos 2.1 GHz,
40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch)

— 16 cores per node,

2048 workers per core void test( - <long>> stack)

{
forall_global(0, 1<<28, [=]1(long 1i){
if (choose_random(push_mix)) {
stack—>push(next_random<long>());
} else {

Methodology stack->pop();

I3
Random throughput workload \ i
— With/without flat combining

— Varied operation mix
(push/pop, lookup/insert)

W * ,” Brandon Holt — Quals - 7 Nov 2013



Flat combining
performance evaluation



Flat combining
performance evaluation

' GlobalQueue GlobalStack

—

o

o
|

Flat Combining
— distributed
= none

Operation Mix
= 100% push

__ 50% push,
50% pop

Throughput (millions of ops/sec)

Brandon Holt — Quals — 7 Nov 2013



Flat combining
performance evaluation



Flat combining

performance evaluation

GlobalHashMap

GlobalHashSet

0,.¢—0 :SASY

5 C—0 :SAS

16 32 48

|
64 8 16 32 A8
Nodes

64

Flat Combining
— distributed
= none

Operation Mix

== 100% insert
__ 50% insert,
50% lookup

Brandon Holt — Quals — 7 Nov 2013

18



Flat combining
performance evaluation

Experimental setup

— Run on the PIC cluster at Pacific Northwest National Lab (PNNL)

— AMD Interlagos 2.1 GHz,
40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch)

— 16 cores per node,
2048 workers per core

Application Kernels

— Scale 26 Graph500-spec graph
(64 M vertices, 1 B edges)

— Breadth First Search benchmark
(find parent tree from random root)

— Connected Components
(using 3-phase algorithm)

Brandon Holt — Quals — 7 Nov 2013

19



performance evaluation

400 -

300

MTEPS
N
3

100

Flat combining

Breadth First Search

Brandon Holt — Quals — 7 Nov 2013

Flat Combining
custom

= = distributed

= none

MTEPS

4_

Connected Components

--------------
-
-
-
-
=

"
—” —'-—————————-\\
-~
~
\\
~

I I I I I
8 16 32 48 64

Nodes

20



Future directions:
“Schrodinger” consistency

-------------------------------------------------------------------------------------------------

W @ ”’ Brandon Holt — Quals — 7 Nov 2013 21



Future directions:
“Schrodinger” consistency

Hiding even more behind high-level data structure abstraction

Delay synchronization as long as possible
— commit when operation would be able to observe order

— example: pushes kept local, pops search for an available push

—_ —_— — —_— —_— —_— = = = = = —_—_— — — — —_—= = = = =

-------------------------------------------------------------------------------------------------

W @ ,” Brandon Holt — Quals — 7 Nov 2013 21



Future directions:
abstract data structure semantics

Brandon Holt — Quals — 7 Nov 2013

22



Future directions:
abstract data structure semantics

“Transactional Boosting”

— abstract semantics to determine conflicts
— express how operations affect and observe abstract state
— abstract locks determine what can happen concurrently

— inverse operations for rolling back aborted transaction

Applying to Grappa and distributed memory
— commutative ops proceed locally in parallel
— inverse ops annihilate without external synchronization

— tasks with conflicting operations delayed; when out of tasks with
commutative ops, then commit and allow others to proceed

Synthesize abstract lock conditions from annotations

Maurice Herlihy & Eric Koskinen. PPoPP 2008.
Transactional Boosting: A Methodology for Highly-Concurrent Transactional Objects.

Brandon Holt — Quals — 7 Nov 2013

22



\e!
IS

-

 ueyeyj uow

© Disney, Inc. Fantasia (The Pastoral Symphony)

Frase
uos|oN qooep

sbblg uojsaid

)
9299 SsInT

]

s19A|\ uopueugq

23

Brandon Holt — Quals — 7 Nov 2013

Nni

W



Jacob Nelson

Brandon Myers

Luis Ceze

Mark Oskin

Brandon Holt — Quals — 7 Nov 2013

Preston Briggs

23



