
sequential consistency 
at cluster scale

Brandon Holt, Jacob Nelson, Brandon Myers,  
Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin

Turning Contention  
 Into Cooperation:

©	
 Disney,	
 Inc.	
 Fantasia	
 (The	
 Pastoral	
 Symphony)

simple, distributed,
batched synchronization

Reducing the cost of synchronized 
global data structures in Grappa

Brandon Holt – Quals – 7 Nov 2013

Irregular Applications

!2

Fraud detection

Barnes-Hut n-body simulation

[Eclipse.sx]

Social network analysis

Machine learning

ClusteringBioinformatics

Brandon Holt – MSR: Cambridge – 9 Oct 2013

Irregular Applications

!3

S.cerevisiae 
[von Mering et al.]

Challenges Opportunities

Data-dependent 
execution
– work imbalance

– dynamic data distribution

Poor data locality
– unpredictable, small,

frequent accesses
across all of memory

– difficult to partition
Lots of data!
– We can exploit

this parallelism!

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Grappa: a latency-tolerant PGAS runtime

!4

Partitioned Global Address Space (PGAS)
programming model
– memory distributed over cluster and partitioned

among cores

– programmed as a single machine (global view)

– C++11 library interface

Runtime capabilities:
– Aggregated communication

– Cooperatively-scheduled lightweight threads 
for latency tolerance

– Access other cores’ data only via  
delegate operations

– Sequential consistency

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Grappa: a latency-tolerant PGAS runtime

!4

Partitioned Global Address Space (PGAS)
programming model
– memory distributed over cluster and partitioned

among cores

– programmed as a single machine (global view)

– C++11 library interface

Runtime capabilities:
– Aggregated communication

– Cooperatively-scheduled lightweight threads 
for latency tolerance

– Access other cores’ data only via  
delegate operations

– Sequential consistency

using namespace Grappa;
!
void grappa_main() {
 
 auto array = global_alloc<int>(N);
 
 forall_global(0, N, [=](int i){
 
 auto val = delegate::read(array+i); 
 if (val == 0) { 
 delegate::call((array+i).core(),[=]{ 
 // ... 
 }); 
 }
 
 }); 
}

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Grappa: a latency-tolerant PGAS runtime

!4

Partitioned Global Address Space (PGAS)
programming model
– memory distributed over cluster and partitioned

among cores

– programmed as a single machine (global view)

– C++11 library interface

Runtime capabilities:
– Aggregated communication

– Cooperatively-scheduled lightweight threads 
for latency tolerance

– Access other cores’ data only via  
delegate operations

– Sequential consistency

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Grappa: a latency-tolerant PGAS runtime

!4

Partitioned Global Address Space (PGAS)
programming model
– memory distributed over cluster and partitioned

among cores

– programmed as a single machine (global view)

– C++11 library interface

Runtime capabilities:
– Aggregated communication

– Cooperatively-scheduled lightweight threads 
for latency tolerance

– Access other cores’ data only via  
delegate operations

– Sequential consistency

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Grappa: a latency-tolerant PGAS runtime

!4

Partitioned Global Address Space (PGAS)
programming model
– memory distributed over cluster and partitioned

among cores

– programmed as a single machine (global view)

– C++11 library interface

Runtime capabilities:
– Aggregated communication

– Cooperatively-scheduled lightweight threads 
for latency tolerance

– Access other cores’ data only via  
delegate operations

– Sequential consistency

Brandon Holt – Quals – 7 Nov 2013
!5

Core Core

Network

Core Core

Core
Worker s->push(7)

Worker s->push(8)

Worker s->push(4)

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7 5

storage

......

Global heap

Standard library aids productivity

synchronized shared
data structures

Generality costs performance/scalability

Brandon Holt – Quals – 7 Nov 2013
!5

Core Core

Network

Core Core

Core
Worker s->push(7)

Worker s->push(8)

Worker s->push(4)

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7 5

storage

......

Global heap

Must maintain consistency

Standard library aids productivity

synchronized shared
data structures

Generality costs performance/scalability

Brandon Holt – Quals – 7 Nov 2013
!5

Core Core

Network

Core Core

Core
Worker s->push(7)

Worker s->push(8)

Worker s->push(4)

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7 5

storage

......

Global heap

Must maintain consistency

Standard library aids productivity

synchronized shared
data structures

Generality costs performance/scalability

Brandon Holt – Quals – 7 Nov 2013
!5

Core Core

Network

Core Core

Core
Worker s->push(7)

Worker s->push(8)

Worker s->push(4)

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7 5

storage

......

Global heap

Must maintain consistency

more concurrency → more contention

Standard library aids productivity

synchronized shared
data structures

Generality costs performance/scalability

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

contention → cooperation

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

contention → cooperation

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

contention → cooperation

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

contention → cooperation

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

contention → cooperation

Brandon Holt – MSR: Cambridge – 9 Oct 2013Brandon Holt – PGAS ’13 – 3-4 Oct 2013

contention → cooperation

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

Contention causes failed lock acquires
(typically compare-and-swaps)

Retries consume bandwidth

Sharing causes cache traffic/thrashing

�7

contention: global lock

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

Complicated schemes are error-prone

Still failed compare-and-swaps and retries

Same result: serialized access

�8

contention: fine-grained sync

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

8

4

7

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

8

4

7

Cooperation via publication list

One combiner does all the work

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

8

4

7

Cooperation via publication list

One combiner does all the work
_

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

8

4

7

Cooperation via publication list

One combiner does all the work
_

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

8

4

7

Cooperation via publication list

One combiner does all the work
_

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

4

7

Cooperation via publication list

One combiner does all the work

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

4

7

Cooperation via publication list

One combiner does all the work

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

47

Cooperation via publication list

One combiner does all the work

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

cooperation: flat combining

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

47

Cooperation via publication list

One combiner does all the work

�9

“Flat Combining and the
Synchronization-Parallelism
Tradeoff” 
Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir 
(SPAA ’10)

[1]

[1]

Brandon Holt – Quals – 7 Nov 2013

Flat combining
Core

Core

Core

Core

Thread 1 push()

Thread 2 pop()

Thread 3 push()

Master

42 13 7

Thread 4 push()

Stack

top

Publication List
head

Publication Record

Publication Record

Publication Record

Publication Record

Simple locking scheme, but maximum of 
1 failed CAS per thread

– beats combining trees and funnels
– beats fine-grained synchronization

Applicable if combined ops are faster than
individually, due to:

– cache locality

– shared traversal (e.g. some linked list)

– better sequential algorithm  
(priority queue: pairing heap vs. skiplist)

[1] D. Handler, I. Incze, N. Shavit, M. Tzafrir. “Flat Combining and the Synchronization-Parallelism Tradeoff” (SPAA 2010)

[2] D. Hendler, I. Incze, N. Shavit, M. Tzafrir. “Scalable Flat-Combining Based Synchronous Queues” (DISC 2010)

[3] S. Kahan and P. Konecny. “MAMA!” (2006)

[4] N. Shavit and A. Zemach. “Combining funnels” (2000)

[5] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. “Combining trees” (1987)

in multicore
[5] [3,4]

[1,2]

�10

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS
7

8

4

�11

Distributed synchronization

– reduce serialization on global lock

– avoid making operations globally
visible if possible

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer7

8

4

�11

Distributed synchronization

– reduce serialization on global lock

– avoid making operations globally
visible if possible

Combining structure: local proxy
– calls operate on this instead
– resolve locally if possible

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer7

8

4

�11

Distributed synchronization

– reduce serialization on global lock

– avoid making operations globally
visible if possible

Combining structure: local proxy
– calls operate on this instead
– resolve locally if possible

One worker commits combined op
– progress guarantee: 

always one in flight per core

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer7

8

4

�12

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible 7

8

4

�12

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

78

4

�12

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7

8

4

�12

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7

4

�12

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7

4

�12

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7

4

�12

One worker becomes combiner:
– freeze current Proxy, create fresh one for

next round
– globally commit
– wake blocked workers  

when finished
– trigger next Proxy to go

Brandon Holt – Quals – 7 Nov 2013

Proxy
buffer

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7

4

�12

One worker becomes combiner:
– freeze current Proxy, create fresh one for

next round
– globally commit
– wake blocked workers  

when finished
– trigger next Proxy to go

Brandon Holt – Quals – 7 Nov 2013

Proxy
buffer

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7 4

�12

One worker becomes combiner:
– freeze current Proxy, create fresh one for

next round
– globally commit
– wake blocked workers  

when finished
– trigger next Proxy to go

Brandon Holt – Quals – 7 Nov 2013

Core Core

Network

Core Core

Core
Worker s->push()

Worker s->push()

Worker s->push()

Worker s->pop()

Global Stack

Node 0 Node N

Master
top

42 13 7

storage

......

Global heap

Flat combining in PGAS

Proxy

Proxy Proxy Proxy

Proxy
push_countbuffer

Workers operate on local proxy
– resolve locally where possible

7 4

�12

One worker becomes combiner:
– freeze current Proxy, create fresh one for

next round
– globally commit
– wake blocked workers  

when finished
– trigger next Proxy to go

Brandon Holt – Quals – 7 Nov 2013

Flat combining in PGAS
C++ model: SC for Data-Race-Free

Enforcing linearizability:
– ensure program order by blocking thread

until globally committed

– globally- and locally-observable order
must coincide

�13

pop()

pop()

push(4)

push(0)

push(2)

pop()

push(1)

push(2)

pop()

push(3)

Core
Worker s->push(0)

Worker s->push(1)

Worker s->push(2)

Worker s->pop()

Core
Worker s->push(3)

Worker s->pop()

Worker

Worker s->pop()

GlobalStack
Committed Order

push(0)

push(2)

Sequential Consistency

Brandon Holt – Quals – 7 Nov 2013

Flat combining in PGAS
C++ model: SC for Data-Race-Free

Enforcing linearizability:
– ensure program order by blocking thread

until globally committed

– globally- and locally-observable order
must coincide

�13

pop()

pop()

push(4)

push(0)

push(2)

pop()

push(1)

push(2)

pop()

push(3)

Core
Worker s->push(0)

Worker s->push(1)

Worker s->push(2)

Worker s->pop()

Core
Worker s->push(3)

Worker s->pop()

Worker

Worker s->pop()

GlobalStack
Committed Order

push(0)

push(2)

push(1)

pop()

GlobalStack
push/pop annihilate each other, can
be anywhere in global order

?

Sequential Consistency

Brandon Holt – Quals – 7 Nov 2013

Flat combining in PGAS
C++ model: SC for Data-Race-Free

Enforcing linearizability:
– ensure program order by blocking thread

until globally committed

– globally- and locally-observable order
must coincide

�14

Sequential Consistency

insert(6)

insert(7)

lookup(0)

insert(0)

insert(1)

lookup(1)

insert(1)

insert(2)

lookup(1)

lookup(3)

Core
Worker insert(0)

Worker insert(1)

Worker insert(2)

Worker lookup(1)

Core
Worker insert(3)

Worker lookup(1)

Worker

Worker lookup(3)

GlobalSet
Committed Order

lookup(1)

insert(2)
insert(0)

insert(1)

lookup(1)

insert(2)

lookup(3)

insert(3)

Brandon Holt – Quals – 7 Nov 2013

Flat combining in PGAS
C++ model: SC for Data-Race-Free

Enforcing linearizability:
– ensure program order by blocking thread

until globally committed

– globally- and locally-observable order
must coincide

�14

GlobalSet/GlobalMap
– insert/lookup must preserve order

– cheaper to disallow local lookups

Sequential Consistency

insert(6)

insert(7)

lookup(0)

insert(0)

insert(1)

lookup(1)

insert(1)

insert(2)

lookup(1)

lookup(3)

Core
Worker insert(0)

Worker insert(1)

Worker insert(2)

Worker lookup(1)

Core
Worker insert(3)

Worker lookup(1)

Worker

Worker lookup(3)

GlobalSet
Committed Order

lookup(1)

insert(2)
insert(0)

insert(1)

lookup(1)

insert(2)

lookup(3)

insert(3)

Brandon Holt – Quals – 7 Nov 2013

Flat combining in PGAS
C++ model: SC for Data-Race-Free

Enforcing linearizability:
– ensure program order by blocking thread

until globally committed

– globally- and locally-observable order
must coincide

�14

GlobalSet/GlobalMap
– insert/lookup must preserve order

– cheaper to disallow local lookups

Sequential Consistency

insert(6)

insert(7)

lookup(0)

insert(0)

insert(1)

lookup(1)

insert(1)

insert(2)

lookup(1)

lookup(3)

Core
Worker insert(0)

Worker insert(1)

Worker insert(2)

Worker lookup(1)

Core
Worker insert(3)

Worker lookup(1)

Worker

Worker lookup(3)

GlobalSet
Committed Order

lookup(1)

insert(2)
insert(0)

insert(1)

lookup(1)

insert(2)

lookup(3)

insert(3)

Brandon Holt – Quals – 7 Nov 2013

Flat combining in Grappa

�15

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Brandon Holt – Quals – 7 Nov 2013

Flat combining in Grappa
Massive multithreading

– many workers, lots of combining

– lightweight suspend/wake

Synchronizing with Proxy is free
– cooperative multithreading within core

– only access other cores’ memory via
delegate ops

�15

Memory Memory

Core Core Core Core Core Core Core Core

Network

Global Heap

Core C
Worker read()

Worker write()

Worker push()

Worker calc()

read()read()work()

Aggregation buffer

Node 0 Node N

Tasks
read()read()work()

Core 0
Worker main()

Worker

Worker

Worker

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

Methodology
Random throughput workload
– With/without flat combining
– Varied operation mix  

(push/pop, lookup/insert)

�16

void test(GlobalAddress<GlobalStack<long>> stack)
{  
 forall_global(0, 1<<28, [=](long i){ 
 if (choose_random(push_mix)) { 
 stack->push(next_random<long>()); 
 } else {  
 stack->pop(); 
 } 
 }); 
}  

Experimental setup
– Run on the PIC cluster at Pacific Northwest National Lab (PNNL)
– AMD Interlagos 2.1 GHz, 

40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch)
– 16 cores per node, 

2048 workers per core

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

�17

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

�17

GlobalQueue GlobalStack

1

10

100

8 16 32 48 64 8 16 32 48 64
Nodes

Th
ro

ug
hp

ut
 (m

ill
io

ns
 o

f o
ps

/s
ec

)

Flat Combining
distributed
none

Operation Mix
100% push
50% push,
50% pop

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

�18

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

�18

GlobalHashMap GlobalHashSet

0

200

400

600

800

0

200

400

600

800

keys: 0−2
10

keys: 0−2
14

8 16 32 48 64 8 16 32 48 64
Nodes

Th
ro

ug
hp

ut
 (m

ill
io

ns
 o

f o
ps

/s
ec

)

Flat Combining
distributed
none

Operation Mix
100% insert
50% insert,
50% lookup

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

�19

Experimental setup
– Run on the PIC cluster at Pacific Northwest National Lab (PNNL)
– AMD Interlagos 2.1 GHz, 

40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch)
– 16 cores per node, 

2048 workers per core

 Application Kernels
– Scale 26 Graph500-spec graph  

(64 M vertices, 1 B edges)
– Breadth First Search benchmark

(find parent tree from random root)
– Connected Components  

(using 3-phase algorithm)

Brandon Holt – Quals – 7 Nov 2013

Flat combining
performance evaluation

�20

Breadth First Search

0

100

200

300

400

8 16 32 48 64
Nodes

M
TE
PS

Flat Combining
custom
distributed
none

0

2

4

6

8 16 32 48 64
Nodes

M
TE
PS

Flat Combining
custom
distributed
none

Connected Components

Brandon Holt – Quals – 7 Nov 2013

Future directions:
“Schrödinger” consistency

�21

Core Core

Network

Core Core

Global Stack

Node 0 Node N

42

13

7

......

8

4

2

6

1 9

Core Core

Network

Core Core

Global Stack

Node 0 Node N

......

Master

42 13 7 6 8 9

storage

?

Brandon Holt – Quals – 7 Nov 2013

Future directions:
“Schrödinger” consistency

�21

Hiding even more behind high-level data structure abstraction

Delay synchronization as long as possible
– commit when operation would be able to observe order
– example: pushes kept local, pops search for an available push

Core Core

Network

Core Core

Global Stack

Node 0 Node N

42

13

7

......

8

4

2

6

1 9

Core Core

Network

Core Core

Global Stack

Node 0 Node N

......

Master

42 13 7 6 8 9

storage

?

Brandon Holt – Quals – 7 Nov 2013

Future directions:
abstract data structure semantics

�22

Brandon Holt – Quals – 7 Nov 2013

Future directions:
abstract data structure semantics

�22

“Transactional Boosting”
– abstract semantics to determine conflicts

– express how operations affect and observe abstract state

– abstract locks determine what can happen concurrently

– inverse operations for rolling back aborted transaction

Applying to Grappa and distributed memory
– commutative ops proceed locally in parallel

– inverse ops annihilate without external synchronization

– tasks with conflicting operations delayed; when out of tasks with
commutative ops, then commit and allow others to proceed

Synthesize abstract lock conditions from annotations

Maurice Herlihy & Eric Koskinen. PPoPP 2008. 
Transactional Boosting: A Methodology for Highly-Concurrent Transactional Objects.

Brandon Holt – Quals – 7 Nov 2013 �23

©	
 Disney,	
 Inc.	
 Fantasia	
 (The	
 Pastoral	
 Symphony)Ja
co

b
N

el
so

n

Lu
is

 C
ez

e

Si
m

on
 K

ah
an

M
ar

k
O

sk
in

Br
an

do
n

M
ye

rs

Pr
es

to
n

Br
ig

gs

Brandon Holt – Quals – 7 Nov 2013 �23

Thank you!

©	
 Disney,	
 Inc.	
 Fantasia	
 (The	
 Pastoral	
 Symphony)Ja
co

b
N

el
so

n

Lu
is

 C
ez

e

Si
m

on
 K

ah
an

M
ar

k
O

sk
in

Br
an

do
n

M
ye

rs

Pr
es

to
n

Br
ig

gs

