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Grappa: a latency-tolerant PGAS runtime

Partitioned Global Address Space (PGAS)
programming model

— memory distributed over cluster and partitioned
among cores

— programmed as a single machine (global view)

— C++11 library interface

Runtime capabilities:
— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency
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Grappa: a latency-tolerant PGAS runtime

Core C

Partitioned Global Address Space (PGAS) Lol
(Worker read() )

. Worker main()
programming model Q _ 2

— memory distributed over cluster and partitioned =~ “5*"& NaMesPace Grappa;

among cores void grappa_main() {
— programmed as a single machine (global view)

: : auto array = global_alloc<int>(N);
— C++11 library interface

forall_global(@, N, [=](int 1i){
Runtime capabilities:

auto val = delegate::read( array+i );
if (val == 0) {
delegate::call((array+i).core(),[=1{

I I‘LZ

— Aggregated communication

— Cooperatively-scheduled lightweight threads
for latency tolerance

— Access other cores’ data only via
delegate operations

— Sequential consistency
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synchronized shared

data structures

(Worker s—>push(7)j
(Worker s—>push(8)j
(Worker s=>pop() j

Standard library aids productivity

Generality costs performance/scalability (Worker s—>push(4)j
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synchronized shared
data structures

Standard library aids productivity
Generality costs performance/scalability

Must maintain consistency

Node O
Core ¢ Core C(
C/J /
/4
111 yo4
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(Worker S->push(7)j
(Worker s—>push(8)j
(Worker s=>pop () j
(Worker s->push(4)j

Global Stack -
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synchronized shareo

data structures

Standard library aids productivity

Generality costs performance/scalability

Must maintain consistency

Core C(

J

VI 4
y 7 4

Core
(Worker S->push(7)j
(Worker s—>push(8)j
(Worker s=>pop () j
(Worker s->push(4)j
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more concurrency — more contention
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contention = cooperation
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contention: global lock

Core

(Thread 1 push ( ))

Contention causes failed lock acquires

— ' (typically compare-and-swaps)

(Threadz /(p'op() j

e Retries consume bandwidth

(Thread?/ push ( )j . . .
— Sharing causes cache traffic/thrashing

______________________________
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contention: fine-grained sync

Core

(Thread 1 push ( ))

Complicated schemes are error-prone

Core

(Thread 2 A Pop() j Still failed compare-and-swaps and retries
Core I /l

(Threads,/ oush( ) Same result: serialized access

Core i/'/’

‘(Threa(f.{/’l}push( ))

______________________________
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cooperation: flat combining
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Core
(Thread 2 |pop()

Core
(Thread 3 |push(8)

Core

‘(Thread 4 push(7))

| Stack '
| ( Master h

| 7N

| top

|

AN

|

| 42 13 7

|

N e e e e

W a ”, Brandon Holt — Quals - 7 Nov 2013

[1] "Flat Combining and the
Synchronization-Parallelism
Tradeoff”

Danny Hendler, Itai Incze, Nir
Shavit, and Moran Tzafrir
(SPAA "10)



cooperation: flat combining

Cooperation via publication list

[1] "Flat Combining and the

Synchronization-Parallelism
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Cooperation via publication list
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[1.2] e

Flat combining in multicore

Simple locking scheme, but maximum of = =
s Thread 1 | push( ) A

1 failed CAS per thread ——Y
. . [5] [314] (ThreadZ pop() b ' A

— beats combining trees and funnels p——
(Thread3 push( )b i }

— beats fine-grained synchronization =T Pucton ed

__________

Master

EU top

Applicable if combined ops are faster than
individually, due to:

— cache locality

______________________________

— shared traversal (e.g. some linked list)

— better sequential algorithm
(priority queue: pairing heap vs. skiplist)

[1] D. Handler, I. Incze, N. Shavit, M. Tzafrir. “Flat Combining and the Synchronization-Parallelism Tradeoff” (SPAA 2010)
[2] D. Hendler, I. Incze, N. Shavit, M. Tzafrir. “Scalable Flat-Combining Based Synchronous Queues” (DISC 2010)

[3] S. Kahan and P. Konecny. “"MAMA!" (2006)

[4] N. Shavit and A. Zemach. “"Combining funnels” (2000)

[5] P-C.Yew, N.-F. Tzeng, and D. H. Lawrie. “Combining trees” (1987)
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Flat combining in PGAS

Distributed synchronization Core
. 1. . Work ->push (7)
— reduce serialization on global lock e )
(Worker s—>push(8)j
— avoid making operations globally (worker [s->pop0> )
visible if possible (Worker [s->push(4))
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Flat combining in PGAS

W
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buffer push_count

\

Core
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Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible
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Flat combining in PGAS

Workers operate on local proxy

— resolve locally where possible - Worker
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Flat combining in PGAS

Workers operate on local proxy

Core i Proxy h

— resolve locally where possible (Worker |s->pusn( )) buffer push_count
.“/(Worker
(Worker
(Worker

- o
-
-
~
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Flat combining in PGAS

Workers operate on local proxy

Core

— resolve locally where possible (Worker
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Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

One worker becomes combiner:

Core

(Worker

s=->push( )j

(Worker

s=->push( )j

(Worker

— freeze current Proxy, create fresh one for % Worker

next round
— globally commit

— wake blocked workers
when finished

— trigger next Proxy to go

W R saijl
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Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible

One worker becomes combiner:

— freeze current Proxy, create fresh one for % Worker

next round
— globally commit

— wake blocked workers
when finished

— trigger next Proxy to go
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Flat combining in PGAS
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Flat combining in PGAS

Workers operate on local proxy
— resolve locally where possible
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Flat combining in PGAS

Sequential Consistency

(yVorker s->push(3{)\
(Worker s—>pop () \ >‘ pop() \'\¢
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(Worker ) | i
I
I

— — — — — — — — o— o—)

GlobalStack
| Committed Order
C++ model: SC for Data-Race-Free i : |
|
. " R oo | push(1) |
Enforcing linearizability: Core | |
( push(2) |
. Worker S—>pUSh(®))\ SUE I
— ensure program order by blocking thread (Worker [s-wousnc | pop() :
until globally committed e > )y! PRI push(3) |
Worker |s->pop |
| — — L —
— globally- and locally-observable order (Worker [s->push(2) O\ push@
. . I L
must coincide : o lpush() | :
| —I
| pop () |
|
Core : pop() |
| |
| |
|
|
|
|
|
|
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Flat combining in PGAS

Sequential Consistency

C++ model: SC for Data-Race-Free

Enforcing linearizability:

— ensure program order by blocking thread

until globally committed

— globally- and locally-observable order

must coincide

push/pop annihilate each other, can
be anywhere in global order

W

NHi

GlobalStack

GlobalStack
I Committed Order
| .
I
| push(1)
Core |
(Worker s->push(®))\ Sush(0) | push(2)
I
(Worker s—>push(1))\’ oush(2) | pop ()
\ push(3)
(Worker s->pop () )’ ——— =9 -
I h(1 | -
(Worker s->push(2))/ ._p_us_(_) | I !_p_usi(_o_) |
. L PO : | push(2) |
[ I L — I — —
| pop ()
Core : 0
(Worker s—>push(3))\ | oush(4)
(Worker “pop) ) >( Pope) \;\¢
(Worker s->pop() y I
(Worker ) i
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Flat combining in PGAS

Sequential Consistency

lookup (0)

'

— — — — — — — — — —

(yVorker :)

GlobalSet
C++ model: SC for Data-Race-Free | Committed Order
| : |
. [ ] L] ofjo i t 1 |
Enforcing linearizability: Core R el D |
- (&Vorker insert(0):)\ - ! insert(2) |
— ensure program order by blocking thread insert@ || Hoorunch |
until globally committed (Worer |insert() R\ [inserecn | L ookup (3 :
(&Vorker 100kUp(1):}’ lookup(1) | p— |
— globally- and locally-observable order (Worker [imserc> Y[ | linsert(e) | |
must coincide RS B N N
. | |1nsert(1)I |
! |lookup(1;1 :
| C———7
Core : !_1nsert(2)I |
(Worker [inserccay N [insert® | o T
|
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(&Vorker lookup(B):}/ | |
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Flat combining in PGAS

Sequential Consistency

C++ model: SC for Data-Race-Free

Enforcing linearizability:

— ensure program order by blocking thread
until globally committed

— globally- and locally-observable order
must coincide

GlobalSet/GlobalMap

— insert/lookup must preserve order

— cheaper to disallow local lookups

Core

(&Vorker

(VVorker

(&Vorker

(&Vorker

insert(0)

insert(1)

lookup(1)

insert(2)

Core

(&Vorker

(VVorker

(&Vorker

(&Vorker

insert(3)

lookup(1)

lookup(3)
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Flat combining in PGAS

Sequential Consistency

C++ model: SC for Data-Race-Free

Enforcing linearizability:

— ensure program order by blocking thread
until globally committed

— globally- and locally-observable order
must coincide

GlobalSet/GlobalMap

— insert/lookup must preserve order

— cheaper to disallow local lookups

Core

(&Vorker

insert(0)

(VVorker

insertJ))

(&Vorker

lookup\'1)‘\/l

(&Vorker

insert(2) J ‘

GlobalSet

|insert(@)

insert(1)
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insert(2)

Core
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Flat combining in

W

NHi

Grappa

Core O

(Worker

main() )

(Worker

(Worker
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\__/

e/ P—
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Flat combining in Grappa

Massive multithreading
— many workers, lots of combining

— lightweight suspend/wake

Synchronizing with Proxy is free
— cooperative multithreading within core

— only access other cores’ memory via
delegate ops

Core O

(Worker

(Worker

(Worker

(Worker

P e e e e

e e e e G o o o e

Aggregation buffer

W R saijl
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(Worker write())
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ode
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work().!b
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Flat combining
performance evaluation

Experimental setup
— Run on the PIC cluster at Pacific Northwest National Lab (PNNL)

— AMD Interlagos 2.1 GHz,
40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch)

— 16 cores per node,

2048 workers per core void test( - <long>> stack)

{
forall_global(0, 1<<28, [=]1(long 1i){
if (choose_random(push_mix)) {
stack—>push(next_random<long>());
} else {

Methodology stack->pop();

I3
Random throughput workload \ i
— With/without flat combining

— Varied operation mix
(push/pop, lookup/insert)
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Flat combining
performance evaluation

' GlobalQueue GlobalStack

—

o

o
|

Flat Combining
— distributed
= none

Operation Mix
= 100% push

__ 50% push,
50% pop

Throughput (millions of ops/sec)
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Flat combining

performance evaluation

GlobalHashMap

GlobalHashSet

0,.¢—0 :SASY

5 C—0 :SAS

16 32 48

|
64 8 16 32 A8
Nodes

64

Flat Combining
— distributed
= none

Operation Mix

== 100% insert
__ 50% insert,
50% lookup
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Flat combining
performance evaluation

Experimental setup

— Run on the PIC cluster at Pacific Northwest National Lab (PNNL)

— AMD Interlagos 2.1 GHz,
40 Gb Infiniband (Mellanox Connect-X 2, with QLogic switch)

— 16 cores per node,
2048 workers per core

Application Kernels

— Scale 26 Graph500-spec graph
(64 M vertices, 1 B edges)

— Breadth First Search benchmark
(find parent tree from random root)

— Connected Components
(using 3-phase algorithm)

Brandon Holt — Quals — 7 Nov 2013
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performance evaluation

400 -
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Flat combining

Breadth First Search
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Flat Combining
custom

= = distributed
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Future directions:
“Schrodinger” consistency

-------------------------------------------------------------------------------------------------
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Future directions:
“Schrodinger” consistency

Hiding even more behind high-level data structure abstraction

Delay synchronization as long as possible
— commit when operation would be able to observe order

— example: pushes kept local, pops search for an available push

—_ —_— — —_— —_— —_— = = = = = —_—_— — — — —_—= = = = =

-------------------------------------------------------------------------------------------------
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Future directions:
abstract data structure semantics
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Future directions:
abstract data structure semantics

“Transactional Boosting”

— abstract semantics to determine conflicts
— express how operations affect and observe abstract state
— abstract locks determine what can happen concurrently

— inverse operations for rolling back aborted transaction

Applying to Grappa and distributed memory
— commutative ops proceed locally in parallel
— inverse ops annihilate without external synchronization

— tasks with conflicting operations delayed; when out of tasks with
commutative ops, then commit and allow others to proceed

Synthesize abstract lock conditions from annotations

Maurice Herlihy & Eric Koskinen. PPoPP 2008.
Transactional Boosting: A Methodology for Highly-Concurrent Transactional Objects.
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